THE EYE IN THE SKY: AVALANCHE MAPPING FROM SPACE

Regula Frauenfelder^{1*}, Timothy D. Glassett², Christian Jaedicke¹, Malte Vöge¹ and Carlo Robiati³

¹Norwegian Geotechnical Institute NGI, Oslo, Norway ²Alaska Dept. of Transportation, Girdwood, AK, USA ³University of Rome, Rome, Italy

ABSTRACT: The Seward Highway in Alaska has over one hundred avalanche paths spread out along a 150 km major transportation corridor, which traverses three different avalanche climatic regimes. This coupled with a small staff can make avalanche debris detection and mapping difficult. With the use of satellite imaging we may have a reliable means of detecting and recording avalanche deposits. During the winter of 2016 the Seward Highway recorded an unprecedented amount of glide avalanche releases. Using SAR imagery we can accurately detect avalanche debris, further aiding in mitigation strategies and avalanche hazard management.

KEYWORDS: glide avalanche, remote sensing, Sentinel satellites, transportation corridor

1. INTRODUCTION

Recent developments in remote sensing data collection techniques are producing data at previously unprecedented and unimaginable spatial, spectral and temporal resolution. The advantages of using remotely sensed data vary by topic, but generally include safer evaluation of unstable and/or inaccessible regions, spatially continuous and multi-temporal mapping capabilities (change detection) and automated processing possibilities. Recent studies show that space-borne optical sensors as well as radar (Synthetic Aperture Radar/SAR) can be used to detect and map avalanche debris (cf. Larsen et al., 2010; Lato et al., 2012; Malnes et al., 2015; NGI, 2015; Wiesmann et al., 2001).

Here we present the use of remote sensing data for avalanche debris detection, exemplified by results from a case study along the Alaskan Seward Highway (Fig.1).

We use both high-resolution optical imagery from the Landsat-8 and Sentinel-2 satellites as well as SAR data from the Sentinel-1 satellite. The data analysed covers the period from March to May 2016.

* Corresponding author address: Regula Frauenfelder, Norwegian Geotechnical, Institute, P.O. Box 3930 Ullevaal Stadion, 0806 Oslo, Norway; tel: +47 97 68 58 64; fax: +47 22 23 04 48; email: rf@ngi.no

Fig. 1: Map section showing Seward Hwy between Anchorage and Seward (to the south) and Homer (to the west), including some of the most notorious avalanche paths. Map source: Google Earth and Alaska Department of Transportation.

2. GLIDE AVALANCHE CYCLE

Glide avalanches are a common sight during the winter in Southcentral Alaska. Typically, they form in the early winter or during the spring melt. Early winter glide avalanches are a function of warm moist snow laid on an unfrozen ground. Spring melt glide avalanches have the most recognizable release mechanisms being increased solar radiation and an isothermal snowpack. The winter of 2015/16 had glide avalanche releases the entire winter. Many mid-winter glide avalanches did not follow normal characteristics and there were no discernible release mechanisms.

The Seward Highway Avalanche Program has a robust 32-year avalanche occurrence dataset. The winter of 2015/16 produced more recorded glide avalanche releases than all the years combined in the dataset. From March 4 to April 14, a total of 44 glide avalanche releases were recorded in paths that affect the Seward Highway (cf. examples in Figs. 2-4). This number is likely lower than the actual number of avalanches occurred, due to the difficulty in identifying and cataloguing each release. The majority of these glide avalanches occurred along a 16 kilometre stretch of highway west of the town of Girdwood, Alaska. In addition, a considerable amount of glides were observed further south along the Seward Highway, around the "Repeat Offender" path. Fortunately, in many of the avalanche paths representing high risk to the highway there was no winter snowpack below 300 meters anymore. The glide avalanches that did release, quickly stopped due to the lack of snow to entrain and the surface roughness in the track of the paths. The glide avalanches that ran >800 meters were in confined tracks and deposited small amounts of debris.

Operationally the glide avalanches did not affect the transportation corridor. Not one glide avalanche made it to the road. If the winter had a normal snowpack below 300 metres the likelihood of the glide avalanche releases reaching the highway would have been increased. Because of the usual number of releases we were not able to get an accurate count of glide avalanches.

* Corresponding author address: Regula Frauenfelder, Norwegian Geotechnical Institute, P.O. Box 3930 Ullevaal Stadion, 0806 Oslo, Norway; tel: +47 97 68 58 64; fax: +47 22 23 04 48; email: rf@ngi.no

Fig. 2: Release area in "Sneaky Peat" #975 path, during the winter 2015/16. Image source: Alaska Department of Transportation (AK-DOT) image.

Fig. 3: Release area in "Supermans" path #945, during the winter 2015/16. Image source: AKDOT image.

Fig. 3: Release area in "Reuben B." #928 path, on March 23, 2016. Image source: AKDOT. See also https://vimeo.com/160299691

3. METHODS AND RESULTS

We used optical imagery from the Landsat-8 and Sentinel-2 satellites to detect avalanche debris. Due to the spatial resolution of these data (15 metres per pixel for Landsat-8, 10 metres per pixel for Sentinel-2) automatic detection algorithms which have been successfully applied to very-high resolution satellite imagery by e.g. Larsen et al. (2010) and Lato et al. (2012), do not work well enough so far. We therefore detected and mapped the avalanches by visual inspection.

For the period of observation, December 2015 to June 2016, there were several Landsat-8 scenes with sufficiently low cloud cover available to allow avalanche detection (cf. Fig. 5 and explanations further down). Sentinel-2 data, however, were affected by cloud cover and we found no scenes in our areas of interest that were analysable. It has to be mentioned that this is coincidental and not due to inherent differences between the two sensors.

A large drawback of optical methods is their dependency of clear sky conditions and good illumination. We therefore used radar data from the Sentinel-1 satellite as well. Synthetic aperture radar (commonly abbreviated as "SAR") data enables avalanche detection and mapping also during bad weather conditions or during periods with polar night. While optical imagery interpretation is quite intuitive even for people without image interpretation training, the recognition of avalanche debris in SAR data is less straight-forward. However, when SAR data is processed adequately and the results illustrated well, also SAR-derived avalanche mapping can be of great value for, e.g., avalanche specialists with the highway authorities.

Figure 5 shows an example of a possible image sequence from data from both Landsat-8 and Sentinel-1 (SAR) for the area around the Repeat Offender avalanche path. Yellow polygons in the figure indicate avalanche paths that have historically affected the highway. As one can see from the image sequence, there is no avalanche activity visible in path #699 between January 21, 2016 and February 2, 2016. However some small avalanches (which in the SAR change detection image in a) are visible as light-green blotches) can be seen to the west, i.e., in the lower-left corner of the image. SAR change detection between early February and early March (not shown) does not show considerable avalanche activity. This is supported by a Landsat-8 scene from March 6, 2016 (b) with now obvious avalanche debris deposits. From observation by AKDOT we know that this situation changed drastically during the end of March

and through April, with a large number of glide avalanches in the area. In the image sequence this can be seen in the Landsat-8 image from April 7, 2016 (c), as well as from the SAR change detection between data from March 21, 2016 and April 14, 2016 (d). Later imagery mainly (e and f) shows the continuous snow depletion throughout spring time. By the end of June (not shown) the area is mostly snow free.

The same type of analysis was applied to other important avalanche paths, such as the "Holiday" path (#912) near Girdwood.

4. CONCLUSIONS

The use of satellite images to map deposits and avalanche release would greatly benefit the Seward Highway Avalanche Program. It takes several hours to visually inspect each avalanche path in the transportation corridor. At times this task cannot be accomplished for several days after an avalanche event. Being able to remotely detect/record avalanche release would aid in mitigation strategies. Having a small staff it is common place to decide which area is the highest hazard to focus mitigation work. With accurate records of release/deposits the avalanche program would be better informed on areas that have not released and are receptive to active mitigation measures.

ACKNOWLEDGEMENTS

Avalanche occurrence data and images are courtesy of the Alaska Department of Transportation Avalanche Program. Work by Regula Frauenfelder and Malte Vöge was partly supported by RDA Troms. The work by Carlo Robiati was supported by an Erasmus+ stipend. Landsat-8 data is Copyright ©NASA Earth Observatory / Landsat-8. Sentinel-1 and -2 data is Copyright ©European Space Agency, 2016. Sentinel-1 data was geocoded with the ASTER GDEM, a product of METI and NASA.

REFERENCES

- Larsen, S. Ø., Salberg, A.-B., Solberg, R. 2010. Automatic detection of avalanches in high resolution optical satellite data. NR Note, SAMBA/04/10.
- Lato, M., Frauenfelder, R., Bühler, Y. 2012. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery. *Nat. Haz. And Earth. Syst. Sci.*, 12: 2893– 2906. doi:10.5194/nhess-12-2893-2012.
- Malnes, E., Eckerstorfer, M., Vickers, H. 2015. First Sentinel-1 detections of avalanche debris. *The Cryosphere Discussion*, 9: 1943– 1963. doi: 10.5194/tcd-9-1943-2015.
- Norwegian Geotechnical Institute NGI. 2015. Avalanche recognition and snow variable retrieval, version 2 (Technical report). NGI Report no. 20130092-04-R. 127 p. <u>https://www.ngi.no/download/file/5385</u>
- Wiesmann, A., Wegmüller, Honikel, M., Strozzi, T. Werner, C. L. 2001. Potential and methodology of satellite based SAR for hazard mapping. Proceedings of the IEEE 2001 Int. Geoscience and Remote Sensing Symposium: 3262–3264.

Fig. 5: Satellite data sequence along Seward Hwy, with "Repeat Offender" #699 path in the image centre (outlined by yellow polygon). Yellow polygons indicate avalanche paths that have historically affected the highway. a) no avalanche activity in path #699, however some small avalanches (visible as light-green blotches) to the west (lower-left corner); b) no avalanche activity; c) and d) numerous glide avalanche occurrences at some point between early March and early April; e) and f) continuous spring melt snow depletion. Sources: Landsat-8 data by Copyright ©NASA Earth Observatory / Landsat-8. Sentinel-1 data by Copyright ©European Space Agency, 2016.