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SUMMARY

Extensive aftershock sequences present a significant problem to seismological data centers

attempting to produce near real-time comprehensive seismic event bulletins. An elevated

number of events to process and poorer performance of automatic phase association

algorithms can lead to large delays in processing and a greatly increased human workload.

Global monitoring is often performed using seismic array stations at considerable distances

from the events involved. Empirical Matched Field Processing (EMFP) is a narrow

frequency band array signal processing technique that recognizes the inter-sensor phase and

amplitude relations associated with wavefronts approaching a sensor array from a given

direction. We demonstrate that EMFP, using a template obtained from the first P-arrival

from the mainshock alone, can efficiently detect and identify P-arrivals on that array from

subsequent events in the aftershock zone with exceptionally few false alarms (signals

from other sources). The empirical wavefield template encodes all the narrowband phase

and amplitude relations observed for the mainshock signal. These relations are also often
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robust and repeatable characteristics of signals from nearby events. The EMFP detection

statistic compares the phase and amplitude relations at a given time in the incoming

data-stream with those for the template and is sensitive to very short-duration signals

with the required characteristics. Significant deviations from the plane-wavefront model

that typically degrade the performance of standard beamforming techniques can enhance

signal characterization using EMFP. Waveform correlation techniques typically perform

poorly for aftershocks from large earthquakes due to the distances between hypocenters

and the wide range of event magnitudes and source mechanisms. EMFP on remote seismic

arrays mitigates these difficulties; the narrowband nature of the procedure makes arrival

identification less sensitive to the signals’ temporal form and spectral content. The empirical

steering vectors derived for the main shock P-arrival can reduce the frequency-dependency

of the slowness vector estimates. This property helps us to automatically screen out arrivals

from outside of the aftershock zone. Standard array processing pipelines could be enhanced

by including both plane-wave and empirical matched field steering vectors. This would

maintain present capability for the plane-wave steering vectors and provide increased

sensitivity and resolution for those sources for which we have empirical calibrations.

Key words: Earthquake monitoring and test-ban treaty verification; Time-series analysis;

Body waves

1 INTRODUCTION

The task of compiling near real-time global seismic event bulletins becomes significantly more difficult

during extensive aftershock sequences following large earthquakes. The difficulties extend beyond the

vast increase in the number of seismic events occurring in a short time duration. The increased number

of seismic signals, often combined with the absence or poor quality of detections on key stations, can

degrade the performance of phase association (PA) algorithms and the quality of automatic event

bulletins. As a result, the workload associated with the subsequent preparation of analyst reviewed

bulletins is strongly increased. On regional and local scales, correlation and subspace detectors may be

able to categorize entire sequences with a remarkable completeness (e.g. Harris & Dodge 2011; Benz

et al. 2015). Globally, Gibbons et al. (2016) suggest that iterative strategies may be needed in which

the world-wide PA procedure is performed repeatedly with the input modified on each iteration as the
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picture of seismicity becomes more complete. Specifically, it is suggested that events in the aftershock

region can be detected and located in the first iteration using a separate process, and that the phase

detections associated with these events are removed from the input to the PA algorithm.

This targeted aftershock classification could probably be performed efficiently using pattern detectors

or grid-search methods over dense local and regional seismic networks (e.g. Tang et al. 2014), but

may be challenging given only a sparse global network. Considering specifically the seismic network

of the International Monitoring System (IMS), for monitoring compliance with the Comprehensive

Nuclear-Test-Ban Treaty (CTBT), we note that the network is dominated by array stations. Arrays provide

enhanced information about individual signal detections and wavefronts, exploiting measurements of

phase- or time-shifts between signals recorded on closely-spaced sensors. We here seek to explore the

limits of how seismicity in a given source region can be characterized by distant arrays using advanced

signal processing.

Fig. 1 displays a dayplot of the data from a short-period vertical motion seismometer at one site of

the Karatau array (KKAR) in southern Kazakhstan at several hundred kilometers distance from the

Kashmir earthquake on October 8, 2005. This array is part of the observational network operated by the

Institute of Geophysical Research of the National Nuclear Center of the Republic of Kazakhstan. Each

signal arrival that is confidently identified as a first Pn onset from the aftershock region, based upon array

analysis, is marked with a red filled circle. At this distance of about 900 km, around 100 s separate the

Pn and Sn arrivals. The duration of the KKAR wavetrain from a single Kashmir earthquake can exceed

3 minutes from first Pn arrival to the end of the S-wave coda, and there are many occasions during this

day when Pn arrivals from multiple events will be recorded within such a time span. Note that the Lg

phase that often dominates regional signals along continental propagation paths is not observed at this

station from this source region (see e.g. Sanborn & Cormier 2018, and references therein). Many of the

apparent gaps in Pn detections (red symbols) in Fig. 1 correspond to the wavetrains from the larger

earthquakes, and it is very likely that the signals from smaller earthquakes in these intervals are simply

masked by the coda.

Fig. 2 displays waveform segments and the corresponding signal and noise spectra for three

earthquakes in the Kashmir sequence. The first event is the magnitude 7.6 mainshock, for which the

signal is emergent but obtains high amplitudes. The signal and noise spectra (Fig. 2 c) show that the

energy following the signal arrival greatly exceeds the energy in the background noise over the full

frequency range of this short-period seismometer. The second event displayed is a magnitude 5.4

aftershock. The regional signals are recorded with a high signal-to-noise ratio (SNR), even in the raw

data, and the earthquake is well-recorded teleseismically. The maximum SNR is at around 2 Hz (Fig. 2

d). The third event is a magnitude 4 aftershock that is not visible in the raw data and is only recorded
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with a satisfactory SNR above 3-4 Hz (Fig. 2 e). The duration of this third signal is far shorter than

for the larger earthquakes, with only a direct arrival visible. Slinkard et al. (2013) demonstrated that

this particular aftershock sequence had very few pairs of events with similar waveforms, such that

waveform correlation would make a poor classifier identifying aftershocks belonging to the sequence.

The waveform dissimilarity quantified by Slinkard et al. (2013) is clear in Fig. 2.

The noise spectra (the shaded regions) in Fig. 2 highlight another of the challenges in seismic

monitoring of aftershocks. The first Pn arrival from the mainshock rises from quiet, ambient, background

noise, but the aftershock Pn arrivals emerge from a much higher noise level comprising coda wave

energy from previous earthquakes in the sequence. If we were to plot the signal spectrum for aftershock

2 (Fig. 2 e) with the noise spectrum for the mainshock (Fig. 2 c) it is clear that this magnitude 4

earthquake would be detected with a high SNR over a broad frequency range under normal background

noise conditions. The wavetrains of preceding aftershocks reduce both the SNR and the frequency band

in which SNR is sufficient for confident detection. The frequencies at which signal coherence between

sensors is strongest, and at which classical array processing performs best (typically between 1 and 4 Hz

on an array with the dimensions of the KKAR station), are also the frequencies where the coda noise is

strongest. A key to confident identification of signal arrivals in increased noise may be a method that

extends coherent array processing to higher frequencies at which the level of coda noise is lower (see

also, e.g., Kværna et al. 2021).

Harris & Kværna (2010) describe the application of Empirical Matched Field Processing (EMFP)

on a small aperture seismic array for classification of seismic arrivals generated by closely spaced

mining explosions. EMFP recognizes characteristics in the seismic wavefronts arriving at closely spaced

sensors from a given region. The EMFP fingerprint corresponding to a seismic arrival in the array traces

is closely related to the (frequency-dependent) move-out in time of the signals across the array. These

characteristics are determined both by the source location and by properties of the path, all the way from

source to receiver. The deviation of the observed wavefront from the predicted far-field plane-wavefront

increases with increasing frequency. This is because the form of higher frequency signals is affected

more by scattering and diffraction on heterogeneities of smaller length scales. Such deformations of the

ideal wavefront degrade the performance of classical beamforming but are indeed exploited by EMFP to

obtain the best characterization of a wavefront from a given source region. It has been demonstrated (e.g.

Wang et al. 2015) that EMFP as a pattern detector can reduce detection thresholds for low magnitude

seismicity recorded on a local network. The application in Harris & Kværna (2010) was assigning a

source to ripple-fired mining explosions, the different source-time functions in the signals typically

precluding the effective use of waveform correlation. The narrowband nature of EMFP mitigated this

problem since the phase and amplitude relations between sensors in the array in each frequency band
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are relatively insensitive to the temporal nature of the signal. Köhler et al. (2022) exploited the same

properties of the narrowband formulation to detect the occurrence of signals from glacial calving events

in array data. Even if the events originated from the same glacier, the signals differed significantly

because of differences in the source-time function. Thus, waveform correlation methods were found to

be unsuitable for detection of these calving events. In this paper, we demonstrate how properties of the

narrowband EMFP formulation can provide enhanced characterization of aftershock sequences using

EMFP templates from P-arrivals from the mainshocks only. This monitoring situation has very different

challenges to the glacial calving study: the geographical extent of the source region, the short duration

of the arrivals, and the vast range of amplitudes and spectral shapes that need to be covered.

Signal pattern detectors (correlation and subspace detectors) recognize familiar waveform shapes

and usually perform best when using the full wavetrain and a high time-bandwidth product (TBP).

Detectors searching for transient signals of unknown form, without a priori knowledge of the fine signal

structure, usually identify changes in the waveform properties (e.g., amplitude, frequency content)

over time-windows of the order of only a few seconds. We apply a form of EMFP here as a bridge

between these two categories of detectors, to identify rapid changes in the incoming wavefield that

have fine-structure consistent with previously observed signals. In Sec. 2 we examine the structure

of wavefronts arriving on an array station from an intensive aftershock sequence and explore how

properties of these wavefronts can be exploited in a matched field detection framework. In Sec. 3 we

sketch a framework for robust detection of arrivals from aftershocks using only the spatial fingerprint of

the first arrival from the mainshock and, in Sec. 4, we discuss considerations in applying the methods to

networks of arrays and more general processing pipelines.

2 EXPLOITATION OF WAVEFRONT PROPERTIES FOR IMPROVED DETECTION AND

ESTIMATION

To make the most complete and accurate inventory of aftershocks possible following a large earthquake,

we want a process that detects and identifies every arrival from the aftershock region on a network of

seismic stations. This network will probably be a significant subset of our global monitoring network:

those stations with the best detection capability for the source region in question. We want to detect as

many aftershock arrivals as possible within the elevated noise levels following the mainshock and, at

the same time, make sure that we eliminate all signals that do not come from this source region from

this event-specific process. The process should be optimal for the kind of seismic stations that dominate

our monitoring network; for the IMS, this means seismic arrays with apertures of a few km. Since the

process is to act following a first arrival from the mainshock, it would be beneficial if we could exploit
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specifically the form of the mainshock signal to enhance the detection capability for aftershocks. In this

section, we outline the basis for selecting EMFP as an ideal method for this purpose.

Fig. 3 shows the locations of the 2005 Kashmir earthquake and its aftershocks (Gibbons & Kværna

2017). Over 100 km separates the most distant aftershocks in the cluster, although even these distances

are relatively small in comparison with the approximately 900 km to the KKAR (Karatau) array in

Kazakhstan. The array is approximately 4 km in diameter and the great circle backazimuth from receiver

to source varies from between 157 and 167 degrees for the events displayed. The distances between

events, compounded by the tectonic complexity of the source region and wide range of focal mechanisms

(e.g. Butler 2019), together with the high frequencies at which the signals are observed, result in

waveforms that are insufficiently similar over the source region for good performance by correlation

detectors (Slinkard et al. 2013). The accuracy with which the array can measure the Direction of Arrival

(DOA) or backazimuth using standard procedures is not sufficient to differentiate between different

parts of this source region. The resolution is not only limited by the Rayleigh criterion but also by

frequency-dependent biases in the backazimuth and slowness estimates with respect to their theoretical

values given by standard velocity models (e.g. Kværna & Doornbos 1991). The reduced Pn signal

coherence between signals on the KKAR sensors at higher frequencies (see Ringdal et al. 2009) also

imposes constraints on the frequency range usable for coherent array processing. Given the signal and

noise spectra (Fig. 2), we are restricted to frequencies between around 1 Hz and 5 Hz. The 2-4 Hz band

provides the best capability given low SNR below 2 Hz for the smaller events and diminished signal

coherence above 4 Hz. Harris & Kværna (2010) demonstrate how the frequency range amenable to

coherent processing is increased using empirical signal processing in narrow frequency bands, since the

need to satisfy uniform time-delays and perfect coherence for all frequencies, at all sensors, is removed.

Fig. 4 displays narrowband slowness beam power grids for the Pn wavefronts crossing the KKAR

array for the three earthquake signals displayed in Fig. 2. For a given short data-window starting at time

t, and frequency ω, the panels in Fig. 4 display relative power as a function of slowness, s,

P̂ (t, ω, s) =
ε(ω, s)HR(t, ω)ε(ω, s)

tr {R(t, ω)}
(1)

where H denotes the Hermitian transpose and the plane-wave steering vectors ε(ω, s) are given by

ε(ω, s) =
[
e−iωs.x1 . . . e−iωs.xN

]T
(2)

with xi denoting the N sensor locations. The narrowband N by N spatial covariance matrices, R(t, ω),

(see Johnson & Dudgeon 1993) are calculated using the multitaper coherence routines of Prieto et al.

(2009) on short windows, typically 3 or 4 s long, starting at time t (see Gibbons et al. 2017, for details).

The multitaper routines provide very stable estimates of the phase differences between signals over
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Tracking Aftershock Sequences 7

short time-windows, mitigating the spectral leakage issues that can make narrowband f − k estimates

less stable than broadband estimates when standard Fast Fourier Transform approaches are applied.

For each Pn arrival in Fig. 4, the optimal slowness vector at 2 Hz (left) is significantly different

from the optimal slowness vector at 4 Hz (right). For each event, the apparent velocity (vapp) for the 2

Hz estimate is slower than 8 km/s whereas vapp for the 4 Hz estimate is faster than 10 km/s. This is a

qualitative difference since the slower apparent velocity would usually identify the arrival as a Pn- or

Pg-phase from regional distances whereas the faster apparent velocity is indicative of a teleseismic or

far-regional P-arrival. Broadband estimates of the slowness vector are made by summing the narrowband

frequency-wavenumber spectra (the grids as displayed in Fig. 4). There are many different ways in

which this summation over frequencies can be performed. One alternative, the simplest, is to stack all of

the narrowband grids with each grid weighted equally. Alternatively, different weights could be applied

to the different grids, either determined beforehand or calculated in some way based on properties of

the data. In this study, we consider only uniformly weighted grid summations. Broadband estimates

result in a scatter consistent with the narrowband patterns in Fig. 4, with the precise backazimuth and

vapp measured depending upon the quality of the estimates at each frequency. Different results may be

anticipated if different weightings were to be applied to the grids.

There is a striking similarity between the narrowband slowness grids of the Fig. 4 events, especially

given the different waveform and spectral characteristics (Fig. 2). The lowest SNR signal shows a weaker

relative power than the higher SNR signal, although the mainlobe and sidelobe structures are similar

between events. The temporal waveforms vary greatly between the Fig. 2 events, limiting the viability of

correlation detectors. The narrowband grid similarity between events suggests a fingerprint that can be

used to identify subsequent arrivals. The 2 Hz and 4 Hz slowness grids indicate very different patterns,

suggesting that the narrowband phase relations contain a richer wavefront description than a plane-wave

parametrization. How reliable is this signature in identifying aftershock sequence arrivals? Is it so

specific to a single source location that it will fail to recognize aftershocks further from the mainshock,

or is it so general that it will trigger on any wavefront arriving from the same general direction?

Assuming that the array traces corresponding to a seismic arrival gives the following spatial

covariance matrix estimate at time t0:

R0(ω) = R(t0, ω), (3)

the principal eigenvector of R0(ω) becomes a complex vector of length N . In our case this reference

time, t0, is the onset of the first P-wave from the mainshock, and we wish to compare the form of

the arriving wavefront at a given time t with the form of the arriving wavefront at the reference time,

t0. Fig. 5 visualizes the narrowband spatial covariance matrices generated from short segments of

waveform data on all array sensors. In panel a), the wavefront satisfies perfectly the plane wavefront
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model; that is to say that the synthetic wavelets are identical (perfect coherence) and that the time delays

satisfy exactly the relations determined by the sensor locations and the slowness vector of the incoming

wavefront. In panel b), the data are real; the signals are not identical and the apparent time delays are a

function of frequency and do not fit a plane-wave model exactly. The coloured symbols in the covariance

matrix representations in panel a) all have identical size for all frequencies, a consequence of the perfect

coherence. The symbol sizes in the covariance matrix representations in panel b) diminish in size as the

frequency increases, a consequence of the reduced waveform similarity. At the lowest frequencies the

observed phase shifts closely resemble the theoretical phase shifts, although there are notable differences.

At higher frequencies, the differences in phase shift for given channel combinations increase. Also

displayed in Fig. 5 are the principal eigenvectors of the covariance matrices. The principal eigenvectors

in panel a) are the theoretical steering vectors, ε(ω, s), defined by the plane-wave model delay-times.

The principal eigenvectors in panel b) are the empirical steering vectors, ε0(ω) = ε0(t0, ω). Both the

covariance matrices and principal eigenvectors displayed in Fig. 5 synthesize array data properties

that represent the impinging waves. These matrices and vectors describe the inter-sensor array data

similarity structure and have different, and potentially more repeatable, characteristics of the wavefront

structure than the temporal evolution of the waveform recordings themselves.

Just as P̂ (t, ω, s) in Eq. 1 provides a measure of the energy incident on the array consistent with

the plane-wavefront hypothesis, s,

P̂0(t, ω) =
ε0(ω)

HR(t, ω)ε0(ω)

tr {R(t, ω)}
(4)

provides a measure of the energy incident on the array consistent with the so-called empirical steering

vector, ε0(ω). Harris & Kværna (2010) demonstrate how the empirical steering vectors derived from

events at a template location capture more of the energy from subsequent co-located events than the

optimal plane-wave sterring vectors. This is to say that deviations from the plane-wave models (s),

observed in the real-world wavefronts, are captured by the empirical steering vectors.

We can form a measure

P̂0(t, ω, s
′) =

[ε(ω, s′) ◦ ε0(ω)]H R(t, ω) [ε(ω, s′) ◦ ε0(ω)]
tr {R(t, ω)}

(5)

where we consider a plane-wavefront vector perturbation, s′, imposed upon the empirical phase shifts,

ε0(ω). [a ◦ b] denotes the Hadamard (element-wise) product between the complex vectors a and b with

[a ◦ b]j = ajbj . (6)

Fig. 6 displays the narrowband beam power slowness grids (Eq. 5) evaluated for the Pn arrivals for

aftershocks 1 and 2 for the perturbation vector

s′ = (s′x, s
′
y) (7)
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when the empirical steering vector for the mainshock Pn arrival is imposed. In Fig. 4, with no imposed

empirical steering vector we saw a qualitative difference between the directions from which the wavefield

appears to approach the array at 2 Hz and at 4 Hz. In Fig. 6, the maximum beam power is approximately

centered for both aftershock arrivals at both frequencies. We can exploit this result to screen out false

alarms, identifying any detected signals that are not P-wave arrivals from within the aftershock zone. If

we perform f-k analysis on a detected signal with the empirical steering vector from the mainshock

imposed, and a clear non-zero slowness vector is measured, the signal can be assumed to be unrelated

to our aftershock sequence.

Having confirmed the stability of the steering vectors of a typical Pn arrival from the aftershock

sequence, from one event to another, we need to devise a detection framework that reports most reliably

when, and only when, a wavefront from this same source region is detected. The estimates of the

covariance matrices are measured in short time-windows (compared with, say, the full duration of the

wavetrain) and we seek a process which interrogates the waveforms continuously to find a characteristic

set of phase shifts in the incoming datastream. If xi and xj denote the position vectors of stations i and

j in our seismic array then the set of locations xij given by

xij = xj − xi (8)

define the so-called co-array (see also, e.g. Johnson & Dudgeon 1993, Chapter 3 for an explanation

of the co-array concept in array signal processing). The elements Rij of the covariance matrices R

displayed in Fig. 5 can also be drawn as a function of the location xij of the corresponding element in

the co-array. Fig. 7 displays the phase differences and coherence measures as a function of position

in the co-array. The theoretical “bubble plot” for 2 Hz (top left) shows bands in the phase differences

tilted in the direction of arrival with the band spacing dictated by the sensor geometry, the apparent

velocity, and the wavelength. The corresponding theoretical phase shift bands at 4 Hz (lower left) have

the same angle but are narrower due to the shorter wavelength. The remaining panels in Fig. 7 are

measured from the data at the time of the Pn arrivals for the three events displayed in Fig. 4. Although

the properties of the wavefronts are more easily interpreted in the narrowband slowness plots in Fig. 4,

we can make predictions about the wavefront behaviour from observing these phase and coherence

relations. For the 2 Hz bubble plots, the measured banded patterns are very close to the theoretical

patterns but with a perceptible change in the angle (also visible as an azimuth deviation in the left-hand

panels of Fig. 4). For the 4 Hz bubble plots, the measured bands are wider than for the theoretical

patterns (also visible as an increase in the apparent velocity in the left-hand panels of Fig. 4). The size

of the symbols in the theoretical bubble plots are identical (perfect signal coherence assumed). The

size of symbols for the empirical bubble plots are diminished as the signal coherence decreases. For

aftershock 1, the diminishing coherence is most notable at 4 Hz as a result of the increased wavefield
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scattering at the smaller length scale. For aftershock 2, the diminishing coherence is even more acute at

2 Hz: a result of reduced SNR.

The differences between the phase and coherence patterns between the theoretical expectations and

the measurements allow us to evaluate the deformation of the wavefront on the various sensors as a

function of frequency. In each panel of Fig. 7 is a square containing two very closely spaced elements

of the co-array; i.e. two pairs of sensors with very similar relative positions. For the theoretical patterns

(left) the two symbols in the square have very similar colours, reflecting the very similar time delays that

should take place between the sensors in each of the pairs. For the empirically measured phase shifts,

the colours of the two symbols in the square are very different, meaning that the wavefront has used

different time intervals to cover the same horizontal distance in different parts of the array. A way to

visualize a matched field detector is a pattern detector which compares the set of phase shifts (coloured

symbols in Fig. 7) with either a theoretical set of phase shifts or a measured set of phase shifts. It is the

latter of these cases that is referred to as Empirical Matched Field Processing or EMFP.

3 ANATOMY OF A MATCHED FIELD DETECTOR

Our results from single Pn phase observations demonstrate that the empirical matched field represen-

tation is consistent for first arrivals from different events in the aftershock region with very different

characteristics (e.g., spectral content and SNR). We wish to use the similarity between the narrowband

phase shift pattern in our template and the narrowband phase shifts measured at any given time in the

incoming data as a means of detecting the presence of an aftershock arrival. The question is whether a

detection statistic that measures this similarity can be a sufficiently reliable indicator of the presence of

a signal of interest. In other words, is the EMFP detection statistic evaluated at the times of aftershock

arrivals sufficiently greater than the background level, and is the variability of the background level of

the detection statistic low enough to be able to set a practical detection threshold? In this section, we

explore how to develop a robust detection framework based on EMFP.

In Fig. 8 we sketch the foundations of a detection procedure using matched field statistics calculated

in very short, overlapping, time-windows. For a given time-window, we calculate elements Rij of the

covariance matrix for traces i, j ∈ {1, ..., N} and distinct frequencies ωk : k ∈ {1, ...,K}: e.g. using

the multitaper coherence routines of Prieto et al. (2009). For our given time, t, we can then calculate K

scalar values of the quadratic form P̂0(t, ω) (Eq. 4) using our chosen steering vector. Each one of these

K values tells us how similar the phase-shifts at this time and this frequency are to the corresponding

phase-shifts defined in our empirical steering vector. In the same way that a spectrogram holds power

density estimates as a function of time and frequency, we here have a wavefield-similarity metric that is

a function of time and frequency. We will here refer to this as a pseudospectrogram so as to remind the
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Tracking Aftershock Sequences 11

reader of the form of its time and frequency dependence, while simultaneously emphasizing that it is

not a conventional spectrogram. We build our pseudospectrogram by repeating this process for each of

many overlapping windows. Detecting short-period seismic signals (e.g. between 1 and 5 Hz), on arrays

with apertures of several km typically requires time-windows of between 3 and 5 s. This time duration is

long enough to estimate the phase and amplitude relations between the signals on the different sensors,

but still short enough that stationarity over the data interval is maintained. The sampling density in time

of the pseudospectrogram should be sufficient to record changes in the coherence relatively smoothly

such that no significant discontinuities are recorded between time-samples. Based on observations of

the rate of change of the coherence with a given slowness, 0.5 s is found to be a good sampling interval.

More rapid sampling than this increases the computational cost without providing new information.

The uppermost panel in Fig. 9 displays a real-data expression of the pseudospectrogram sketched in

Fig. 8. Each pixel displays the value of P̂0(t, ω) (as defined in Eq. 4) where t and ω denote the time

and frequency respectively. The 0 subscript indicates the application of the empirical steering vector

ε0(ω) = ε0(t0, ω) extracted as the principal eigenvector of the covariance matrix of the Pn-onset at

time t0 for the signal from the mainshock. A 20-minute-long data segment is displayed, containing 3

moderate sized aftershocks in addition to many smaller events. Aftershocks 1 and 2 displayed in the

previous figures are the arrivals labelled “A1” and “A2” in Fig. 9, both clearly visible as vertical red bars.

The pixels shown at the times of the Sn arrivals are largely blue, indicating that the slowness vector

for the Sn-arrival is sufficiently different from the Pn arrival slowness vector to prevent a significant

match. This is significant since a classical beam steered with the time delays applicable to the Pn arrival

will have a significant burst of energy at the time of Sn; the
√
N noise reduction will not completely

suppress this. The absence of red pixels at the time of this Sn arrival time suggests that Sn-triggers will

generally not occur using a detection statistic based upon this P̂0(t, ω) measurement.

There are many examples of seismic signal detectors that exploit both time and frequency signatures.

Joswig (1990) demonstrates signal identification through pattern matching in the time-frequency space.

Taylor et al. (2010) sought short-duration transients on spectrograms that appeared as vertical lines and

applied image processing filters optimized for such shapes. A slightly different approach is required when

detecting signal onsets in spectrograms from long codas. Gibbons et al. (2008) apply a transformation

of the form

S(ω, t) = (log10[P (ω)t+]− log10[P (ω)t−]) log10[P (ω)t+] (9)

where P (ω)t+ = P (ω, t, L) denotes the amplitude density spectrum measured for the window

immediately following a time t, and P (ω)t− = P (ω, t−L−ε, L) the estimate from the window ending

at time t. Here L is the window length used to make the measurement and ε is the shorter separation

between the sliding windows P (ω)t+ and P (ω)t−. This transformation is intended to provide local
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maxima at times with both high signal amplitude and a high signal amplitude increase. This is necessary

given that seismic signals can obtain the greatest amplitudes significantly later than the onset.

The function P̂0(t, ω) in Fig. 9 has a rather different form depending on the event size. For the

three largest aftershocks, coherent energy consistent with the imposed phase shifts occurs across the

full frequency range (1-5 Hz). At the lowest frequencies, the match with the empirical steering vectors

persists far into the coda. The match with the Pn-phase shifts ends, over a minute later, with the Sn

arrival. At this time, a coherent arrival with a different set of time delays starts to dominate. As the

frequency increases, the duration of the high match with the empirical steering vectors decreases until

only a short transient at the signal onset matches. For many smaller signals, only a short-duration

vertical band is observed, typically only at higher frequencies. Identifying signal arrivals from the

pseudospectrogram appears simple for the human eye. A transformation

S(ω, t) =
(
P̂ (ω)t+ − P̂ (ω)t−

)
P̂ (ω)t+ (10)

places strong vertical bars at the signal arrivals and diminishes into the signal coda (Fig. 9, middle

panel). Note that the logarithm is required in Eq. 9 since the un-normalized amplitude density spectrum

terms P (ω, t, L) cover a vast range. The relative power terms P̂ in Eq. 10 are all between zero and unity

and so no logarithm is needed.

We wish to transform a broadband signal with a visible impression in the time-frequency domain to

a simple time-series from which triggers are identified reliably. In the lowermost panel of Fig. 9 are

simple mean values of the time-frequency grids in the other two panels. The black line is the mean over

all frequencies of P̂0(t, ω). The curve varies relatively smoothly, and the human eye can identify several

of the likely arrivals from the steep discontinuities. The limited dynamic range may make the signals

difficult to identify using, for example, a power detector. The orange trace shows the mean over ω of

S(ω, t). The peaks are clearer, but the variability in the noise floor is still high. The difference term in

Eq. 10 means that small contributions, in particular from coda energy at the lower frequencies, can lead

to an oscillation unrelated to new signal arrivals. The array response for the lower frequencies has a

broader peak such that the likelihood of coincidental match of coherent noise energy with the imposed

phase shifts is greater at lower frequencies than at high frequencies.

Panels a) and b) of Fig. 10) show single frequency scalar traces selected from the upper two panels

of Fig. 9. For a single frequency, ω, P̂0(t, ω) is a noisy time-series spanning the interval [0, 1]. There are

many frequencies at which a given arrival fails to provide a significant imprint. It is the consistency of

behaviour over a broad range of ω that provides useful signal and allows for enhanced detection through

stacking. S(t, ω) is a less noisy time-series and now spans the range [−0.25, 1] with negative values

indicating a decrease in P̂0(t, ω) from one time-window to the next. A stacking operation over ω may

degrade local maxima over some frequency range if there are coincidentally negative values at different
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Tracking Aftershock Sequences 13

frequencies. Replacing S(t, ω) with exp10S(t, ω) (panel c) provides a function theoretically spanning

the range [0.56, 10], but increasing the significance of the local maxima of S(t, ω). The mean over ω of

exp10S(t, ω) − 1.0 (panel d) finally gives us a scalar time series in which a very limited number of

peaks can be identified by setting a simple threshold value.

The trace in Fig. 10 d) can be considered to be the equivalent of a beam output for a single empirical

steering vector, ε0(ω). The significance is that it uses only the first few seconds of the signal generated

by the mainshock of the earthquake sequence as a template; we do not need to wait for multiple

aftershocks to build up a database of templates. It detects more signals than a correlation detector using

the mainshock signal as a template (Slinkard et al. 2013) but fewer signals than an STA/LTA detector on

a filtered beam (which would, for example, also have detected the Sn arrivals). The procedure performed

at each frequency ω is designed to reduce the influence of frequencies at which the signal is not well

observed. As Gibbons (2014) points out for detectors using multitaper spectrograms, this detector would

be quite stable to strong noise in narrow bands provided that the band affected is small in comparison

with the band occupied by the signal.

4 CONSIDERATIONS IN NETWORK PROCESSING AND PHASE ASSOCIATION

The preceding sections have focused only upon the single seismic array KKAR. We will now consider

a network monitoring operation, where the aftershock sequence will be observed on seismic arrays,

with different geometries and placements, at many different directions and distances. Fig. 11 displays

P̂0(t, ω) and S(t, ω) pseudospectrograms for four different seismic arrays. BVAR (Borovoye), WRA

(Warramunga), and ILAR (Eielson) are IMS arrays.

The KKAR array is unique among these stations in recording the full regional wavetrain with

Pn and Sn with coda. BVAR, ILAR, and WRA record teleseismic P from this sequence with varying

lengths of coda-wave energy. The P-arrivals at BVAR typically have high SNR and, while many of

the smaller events visible at KKAR are not observed at BVAR, there are a few signals at BVAR not

visible at KKAR because of high amplitude S-wave coda. The P-wave coda at BVAR can have quite

long duration, even for relatively small events.

The WRA P̂0(t, ω) pseudospectrogram shows considerably less red, i.e., high beam power, than for

KKAR and BVAR although many of the faint vertical lines generate significant stripes in the S(t, ω)

pseudospectrogram. The bursts of red areas have a shorter duration than at the closer arrays. WRA is a

significantly larger array than KKAR and BVAR (aperture exceeding 20 km, as opposed to 5 km). This

may lead to a slightly reduced relative power, especially for higher frequencies. However, the reduction

in coherence for the background noise is at least as significant as the reduction in coherence for the

signal and the WRA noise floor appears to be exceptionally low. WRA also has 20 sensors compared
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14 T. Kværna et al.

with the 9 sensors at KKAR and BVAR which also increase the contrast between signal and noise. The

larger aperture at WRA means that the peak in the slowness grid for a given frequency is much narrower

than at the smaller arrays. Given the much greater distance between the aftershock zone and WRA, the

sharpness of the peak in slowness space is less significant than it would have been for KKAR since the

same range of backazimuth angles at this greater distance covers a far wider geographical region.

Finally in Fig. 11 is ILAR, Alaska. As for WRA, coherent signals consistent with the first arrival

phase shifts of the mainshock are of short duration. Although marginally closer to Kashmir than WRA,

ILAR appears to have the poorest sensitivity to aftershock zone events. While WRA records energy

from these events at frequencies above 4 Hz, ILAR appears to be limited to frequencies up to 3 Hz.

There are many considerations in the definition of the matched field templates used in this study.

Window length, frequency band, and sampling interval for the pseudospectrams are key questions to be

addressed, although we note that a good knowledge of the signal and noise spectra is beneficial for any

form of targeted signal processing.

Fig. 12 displays four different traces targeting Pn arrivals at KKAR from the Kashmir aftershock

sequence. Panel a) displays the filtered Pn-beam as would be applied in a classical plane-wave beam

deployment. Although optimized for the best-fitting plane-wave Pn time delays from the main shock, it

is clear that several signals with different slowness vectors would also record a high SNR. A further

problem (c.f. Fig. 4) is that the time delays predicted for this arrival do not correspond exactly to the

phase shifts valid for the different frequency bands; the differences between e.g. 2 and 4 Hz mean that

no set of time delays will perfectly define the correct phase shifts. Smaller events are seen only at higher

frequencies and, given the shorter wavelength, these waveforms are more diminished by beamforming

misalignment.

Panel b) shows the AR-AIC trace discussed by Gibbons et al. (2016). This trace is calculated from

the beam displayed in panel a). An advantage of this trace is that the times of the local maxima provide

exceptionally good estimates of the signal onset time. The trace has a lower dynamic range than the

beam itself and it is easier to identify at a glance arrivals from the smaller events than from the original

waveforms. Since the AR-AIC trace is calculated purely from auto-regressive models of segments of

the beam, it is also unable to differentiate between the signals of interest and unrelated signals.

Panel c) displays two matched field scalar traces as developed in the previous section. In the first,

labelled “Plane-Wave Matched Field Scalar Function”, we have used the steering vector generated

using the plane-wave model time-delays, the same as used for the beam in a) (c.f. Fig. 5 a). In the

second, labelled “Empirical Matched Field Scalar Function”, we have used the empirical steering vector

generated using the P-wave arrival from the mainshock signal (c.f. Fig. 5 b). Both of these traces have

an even lower dynamic range than the AR-AIC trace, but far lower noise floors. The matched field
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Tracking Aftershock Sequences 15

scalar traces are only sensitive to first Pn-arrivals from the source region and, unlike the AR-AIC trace,

do not generate a trigger at the time of the Sn-arrivals. These traces are sampled more coarsely than

the AR-AIC trace and have the same sampling interval used for constructing the pseudospectrograms.

Again, there is little to be gained by using a shorter sampling interval. The need for a short sampling

interval is diminished by the length of data necessary to make robust estimates of the narrowband phase

shifts and the rate at which the phase shifts change over the signal wavetrain. We recommend using the

matched field traces to confirm the presence of a signal of interest and subsequently using the AR-AIC

trace for an optimal estimate of the phase arrival time.

A number of signals at the noise level in the plane-wave matched field detection trace are elevated

to clear detections in the empirical matched field detection trace. This is primarily a result of the phase

shifts changing to match the observed wavefield as a function of frequency and therefore compensating

for the deformation of the wavefield observed. We know from the differences between the plane-wave

and empirical steering vectors (Fig. 5) that waveform misalignment will occur at the higher frequencies

if the plane-wave time-shifts are applied. We also know (Fig. 2) that the smaller events are only well

observed above the coda noise at these frequencies. An observation that was not obvious prior to the

study is that the phase shifts measured from the mainshock first arrival would also be applicable to the

vast majority of events in the aftershock zone (see Figs. 6 and 7).

We note that each of the matched field traces displayed in Fig. 12 c) is generated by a single

steering vector. It may be sufficient when tracking an aftershock sequence to have a single template

(e.g. the first arrival from the mainshock) on each array being used, and there are clear operational

advantages to restricting the process to a single steering vector. Whether additional matched field

templates from subsequent aftershocks would significantly improve aftershock recovery rates, or simply

provide duplication of effort, would need to be investigated empirically. The answer to this question

would depend upon the size of the aftershock zone and the relative location and properties of the

observing array. An exceptionally large aftershock zone may necessitate multiple templates aimed

at different parts of the aftershock region. The templates in this paper have been exclusively initial

P-arrivals from the main shock at each array. The procedure could be extended to use different templates

for different phases in the wavetrain at a given station, for example Pn, Pg, Sn, Lg, P, and S as appropriate,

in order to increase the sensitivity. Köhler et al. (2022), for example, used an empirical steering vector

of an S-wave template in addition to the P-wave template to detect repeating events at a calving glacier

in Svalbard, mainly to compensate for the lack of multiple array observations. This could be applied

without difficulty in that study given the very limited geographical extent of the source region; a single

S-P time-delay was applicable to the entire zone of glacial calving. For an extended aftershock zone,

the time-offsets between the different phases in single wavetrains would need to be accounted for. The

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad297/7230365 by U

niversity of O
slo Library, IT-departm

ent user on 28 July 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

16 T. Kværna et al.

restriction to the initial P-arrival from the mainshock is advantageous for a semi-autonomous procedure.

Any extension of the method that requires secondary phases for matched field templates will demand

additional human interaction and supervision. Given an observational network with multiple arrays,

using secondary phases may be both unnecessary and detrimental to performance.

5 CONCLUSIONS

We wish to characterize aftershock sequences as accurately as possible using automatic signal processing

in order to reduce the human effort of compiling comprehensive seismic event bulletins. The classical

processing pipeline of single-station phase detection, followed by global phase association, frequently

breaks down under extensive aftershock sequences due to the vast number of detections and limitations

in current algorithms for building events. Correlation and subspace detectors show promise for building

event lists for many categories of aftershock sequences. However, for the largest sequences, the full-

waveform signal detectors often perform poorly due to large inter-event distances, differences in spectral

properties, and differences in source mechanism.

We advocate the use of matched field detectors on array stations, using templates constructed from

the first P-arrivals from the mainshock, to detect and identify aftershocks reliably. Empirical Matched

Field Processing (EMFP) is a pattern detector that recognizes phase patterns in the wavefronts incident

on an array, although we here apply it as a single-phase detector analogous to beams used in classical

array processing. The deviations from the plane-wavefront model often observed on seismic arrays can

be very frequency-dependent and the narrowband wavefield representation of EMFP allows optimal

steering over a wide range of discrete frequencies.

Using the aftershock sequence of the October 8, 2005, Kashmir earthquake as an example, we

describe many of the complications arising in existing pipelines and demonstrate how EMFP helps to

mitigate them. Three clear complications can be listed:

(i) There can be significant deviations from the plane-wavefront model. EMFP mitigates this by

calculating empirical and frequency-dependent phase-shifts.

(ii) There is often dominant energy at frequencies higher than those amenable to classical beamforming.

(This is particularly an issue for the smaller aftershocks for which the SNR at low frequencies is

diminished.) EMFP mitigates this by extending the frequency range at which coherent array-processing

can be performed.

(iii) The spectral content of signals from different events in the sequence varies greatly. (This affects

both the classical beamforming gain and the bias in direction estimates using f-k analysis.) EMFP

mitigates this with a frequency-by-frequency approach that recognizes coherence between array elements
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Tracking Aftershock Sequences 17

at all frequencies where it is observed, and that diminishes the influence of frequencies where the signals

are excessively incoherent or poorly observed.

The process described for tracking aftershock sequences can be applied to multiple stations in a

regional or global network. When applying the methodology presented here to four large aftershock

sequences using data from stations of the International Monitoring System of the CTBTO, the conference

presentation Köhler et al. (2020) demonstrated that about 50% of the verified aftershocks could be

automatically detected and located with high accuracy. A general grid search methodology was used

for associating the EMFP phase detections at the different stations (e.g. Gibbons et al. 2016). The

parametric data that can be obtained using the methods described in this paper can facilitate far more

advanced association models (e.g. Arora et al. 2013; Le Bras et al. 2021), which again could provide

improved aftershock processing results.

Significant progress has been made using waveform similarity for aftershock processing and more

general seismic pipelines (e.g. Harris & Dodge 2011; Junek et al. 2015; Dodge & Harris 2016) and we

are now likely entering the phase in which pattern recognition and deep learning algorithms will start to

take a dominant role in seismic signal detection and interpretation, both regionally and globally (e.g.

Mousavi et al. 2019; Shen et al. 2019; Mousavi & Beroza 2022). Empirical Matched Field Processing

exploits features of the seismic wavefield at array stations that are more characteristic than the shapes

of the waveforms themselves and will likely make a contribution to future as well as current seismic

processing pipelines.
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DATA AVAILABILITY

The data from the KKAR-array is available from via the Seismological Facility for the Advancement

of Geoscience operated by the EarthScope Consortium at https://ds.iris.edu/ds/nodes/dmc/

data/ (network KZ, last accessed April 2023).
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Channel KK01_SHZ of KKAR array, Karatau, Kazakhstan.          October 8, 2005 (DOY 281)
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Figure 1. A dayplot of waveform data, bandpass filtered 2-8 Hz, from the KK01 SHZ element of the Karatau

array (KKAR) on October 8, 2005. The red symbols indicate detections for which array analysis (f − k analysis)

returned an apparent velocity in the interval 7 − 10 km/s and a backazimuth between 150 and 175 degrees,

corresponding to Pn phases from the aftershock region of the magnitude 7.6 Kashmir earthquake. The f − k

analyses were performed in the fixed frequency band 2− 4 Hz, in a 3.5 second time window starting at the signal

onset determined by the autoregressive AR-AIC method. Notice the lack of signal detections (red symbols) within

the wavetrains of the larger earthquakes. Smaller earthquakes in these time intervals are masked by the phase

arrivals and associated coda of the larger events. KKAR consists of 9 vertical component sensors deployed in

two concentric circles with approximate radii of 500 meters and 2000 meters, respectively. The geometry of the

KKAR is shown in Fig. 3.
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Figure 2. Signals on the KKAR array from 3 events in the Kashmir earthquake sequence recorded on October 8,

2005. Waveforms from the channel KK01 SHZ are displayed centered on three Pn arrivals in panels a) (unfiltered)

and b) (bandpass filtered, 4− 8 Hz). The times of the arrivals are specified in the spectrum estimates in panels c),

d) and e) for which a multitaper estimate (Thomson 1982) of the amplitude density spectrum (ADS) is calculated

for 10-second windows for the signal arrival (black line) and the preceding noise (grey-shaded).
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Figure 3. Relocated aftershocks (red filled circles) of the October 8, 2005, Kashmir earthquake in relation to the

KKAR array (geometry shown in the inset). The distance from the aftershock region to KKAR is about 900 km.
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Figure 4. Narrowband f − k analysis at 2 Hz (left) and 4 Hz (right) for the Pn phase arrivals displayed in

Fig. 2. The color scale shows relative beam power on the slowness grid with the maximum (the backazimuth and

apparent velocity estimate) indicated by the filled white circular symbol. The slowness vector corresponding to

the maximum relative power is referred to in the text as the optimal slowness vector. The red circle indicates a

constant apparent velocity of 8.1 km/s and the red line labelled 163.5◦ points in the geographical direction of

the October 8, 2005, Kashmir main shock. Notice the differences in backazimuth and apparent velocities when

estimated at 2 Hz and 4 Hz, respectively, as well as the similarity between the events at a particular frequency.

The frequencies between 2 and 4 Hz (not shown) indicate a progression from one pattern to the other, with the

peak narrowing and the relative strength of the sidelobes increasing with increasing frequency. Above 4 Hz, the

ability to discern a clear direction of the incoming wavefield diminishes as the combined effects of aliasing and

signal incoherence make the main lobe indistinguishable from the multiple sidelobes.
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Figure 5. Covariance matrices and empirical steering vectors from KKAR array data for a) a simulated perfect

plane wavefront and b) the first P-wave arrival for the Kashmir mainshock. The differences between the theoretical

and real-world covariance matrices increase with increasing frequency. The colours represent the phase shifts at

each frequency band. Details in text.
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Figure 6. Narrowband f−k analysis at 2 Hz (left) and 4 Hz (right) for the Pn phase arrivals for the two aftershocks

(see Fig. 2) relative to the imposed empirical steering vector calculated for the mainshock Pn arrival (c.f. Eq. 5).

The arrival times for the two aftershocks, both occurring on 8 October, 2005, are given in the figure. The panels

visualize the sensitivity of the EMFP beam power to a changing source location. High power at zero slowness

means that a small variation in source location in the aftershock region does not have a significant impact on the

EMFP results. We can say that the array is not able to resolve a difference between the directions of arrival for

the three events. Whereas estimating the slowness vector using classical plane-wave f − k analysis will give a

different result depending upon the frequency band (Fig. 4), the zero-slowness vector relative estimates displayed

here appear stable over different frequency bands.
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5 km

2 Hz  (theoretical) 2 Hz  (mainshock) 2 Hz  (aftershock 1) 2 Hz  (aftershock 2)

4 Hz  (theoretical) 4 Hz  (mainshock) 4 Hz  (aftershock 1) 4 Hz  (aftershock 2)
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Figure 7. Bubble plots for the KKAR array at 2 Hz and 4 Hz for a theoretical plane-wave arrival from the location

of the Kashmir mainshock and for the empirically measured phase shifts for the three events on October 8, 2005,

as indicated (see waveforms in Fig. 2). The dashed lines represent wavefronts, separated with a half wavelength,

arriving at the array with an apparent velocity of 8.1 km/s and a backazimuth of 163.5◦. The reference times for

“mainshock”, “aftershock 1”, and “aftershock 2” are given above the upper panels. The small black box in the

different panels highlights two points in the co-array with almost identical locations. The phase differences are

indicated in colour and the circle diameters are proportional to coherence.
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Figure 8. A sketch illustrating the generation of a matched field pseudospectrogram from a single seismic array.

For short overlapping time windows, the array covariance matrix is computed for different narrow filter bands.

Multiplication with empirical steering vectors of the main shock results in beam power for different frequencies

according to Eq. 4. The colors and size of the elements of the covariance matrices R represent, respectively, the

relative phase shift and the coherency between the array sensor pairs. Similarly, the colors and size of the steering

vectors ε correspond to the phase and amplitude.
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Figure 9. Panel a) shows the pseudospectrogram P̂0(t, ω), i.e., beam power for narrow frequency bands and short

overlapping time windows using the empirical steering vector of the main shock, for a 20 minute segment of

KKAR data on October 8, 2005. The waveforms centered on 1.5, 3, and 4.5 Hz display the plane-wave KKAR Pn

beam steered towards the source region, band-pass filtered at the center frequencies indicated with bandwidth

1 Hz. Blue pixels indicate times and frequencies with little energy incident on the array consistent with the

phase shifts in the empirical steering vector; red pixels indicate that incident energy is dominated by a wavefront

consistent with this phase pattern. Panel b) shows S(t, ω), a transformation of P̂0(t, ω) enhancing changes in

consistency with the template steering vector. Panel c) shows a black line for beam power P̂0(t, ω) averaged over

all frequencies of the top panel. Similarly, the orange line is frequency average of the S(t, ω) of the middle panel

as a function of time. The time of the P-arrivals from the two aftershocks displayed in Fig. 2 are labelled “A1”

and “A2”, respectively. The dashed black arrows correspond to Pn signals from the four aftershocks reported

during this time interval in the REB. The solid blue arrows indicate Sn arrivals from the three largest aftershocks

in the time window. Notice that these Sn arrivals are efficiently suppressed by the EMFP processing procedure.
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Figure 10. Generation of a robust detection statistic from matched field pseudospectrograms. Panels (a) and (b)

display the functions in panels (a) and (b) of Fig. 9 for three discrete frequencies. Panel (c) shows the exponential

of the scalar functions in panel (b) and (d) shows the mean over ω of the functions in (c).
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Figure 11. Pseudospectrograms for the KKAR, BVAR, WRA, and ILAR arrays on October 8, 2005. Distances

from the Kashmir mainshock are 9 degrees (KKAR, Kazakhstan), 19 degrees (BVAR, Kazakhstan), 80 degreees

(WRA, Australia), and 76 degrees (ILAR, Alaska, USA). The P̂ (t, ω) and S(t, ω) pseudospectrograms have

been shifted according to the traveltimes from the mainshock to the different stations. The vertical dashed arrows

correspond to aftershocks reported in the REB. Notice that there are several instances of concurrent vertical red

stripes across the different S(t, ω) pseudospectrograms which are not associated with any REB events. These

instances correspond to P-arrivals from additional aftershocks. The black ovals indicate EMFP detections at

BVAR that are likely to correspond to events in the sequence for which the Pn arrival at KKAR is obscured by

coda-wave energy from earlier events.
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Figure 12. Detection statistics for identifying Pn arrivals from Kashmir earthquake aftershocks on the KKAR

array. a) shows the optimized plane-wave Pn beam, bandpass filtered 1-5 Hz, b) shows the continuous AR-AIC

detection statistic (Gibbons et al. 2016), and c) displays the scalar functions derived (c.f. Fig. 10 d) for two

different steering vectors: the plane-wave phase shifts predicted for the Kashmir mainshock and the empirical

phase shifts measured from the mainshock first arrival. The two matched field traces in panel c) are displayed

with the same vertical scale.
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