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bxy Centrifugal force per unit mass in vertical tan-
gent plane

9 Gravitational force per unit mass
ge Effective gravitational force per unit mass
h Flow height
m Shear viscosity
ml, m2 Visco-elasticities
n Material power law exponent
Pi Station points on the centre line
Pe Effective pressure
Pu Pore pressure
Qi Path points defining the centre line of the ava-

lanche terrain
R Radius of computational cross sectional profile
l/a Average velocity through flow cross section
l/x, l/y, 1/1 Velocity components
w Computational flow width
XY Z, xyz Cartesian coordinates
ax Slope of horizontal projection of centre line
e Angle of inclination of the free surface of the

avalanche
I\;XZ Curvature in t he horizontal plane
I\;"y Curvature in the vertical tangent plane
J.L Dry-friction coefficient
p Mass density
0'. T Normal stress and shear stress
q> Slope of centre line in the vertical tangent

plane
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ABSTRACT. Two models simulating snow avalanches impacting retaining dams at
oblique angles of incidence are presented.

First, a lumped-mass model applying the Voellmy-Perla equation is used to calculate
the path of the centre-of-mass along the side of a retaining dam.

Secondly, a one-dimensional continuum model, applying depth-integrated equations
of balance of mass and linear momentum, is expanded to take into account that real ava-
lanche flows are three-dimensional. The centre-line of the avalanche path is determined
by the flowing material as it progresses down the channelized avalanche path. The non-
linear constitutive equations comprise viscosity, visco-elasticity and plasticity.

Both models are calibrated by simulations of a registered avalanche following a
strongly curved channel. The path and the run-up height of the avalanche on the natural
deflecting dam with oblique angle of incidence as calculated by the two models, are com-
pared with the observations made.
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1. INTRODUCTION

Increased human activity in mountain regions, deforesta-
tion from pollution, forestry and ski resorts, as well as a re-
duced acceptance of living in regions exposed to snow
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avalanches have caused a growing need for protection
against avalanches. Such protection is more and more often
obtained by constructing retaining dams to influence the
dense-snow avalanche course. Better knowledge and under-
standing of terrain deflection of dense-snow avalanches will
improve the design of deflecting dams.

The first attempt to formulate a general theory of dense-
snow avalanche motion was made byVoellmy (1955) and this
theory is still widely used. Both statistical and comparative
models for run-out distance computations, as well as dyna-
mic models for avalanche motion simulations, are now de-
veloped. However, no universal model has so far been made.
The dynamics of avalanches are complex, involving both
fluid, particle and soil mechanics. The limited amount of
data available from real events makes it difficult to evaluate
or calibrate existing models. Often several models with
different physical descriptions of avalanche movement can
all fulfil the deficient observational records.

In spite of the uncertainties with which the existing
models are encumbered, simulations of avalanches impact-
ing retaining dams at oblique angles of incidence have to take
into account that real avalanche flows are three-dimensional.
Neither the run-up heights pioneered by Voellmy (1955) nor
the leading-edge models by Hungr and McClung (1987) or
Takahashi and Yoshida (1979) (Takahashi, 1991)contain de-
flection effects. This is also the case for the paper by Chu and
others (1995)on experiments on granular flows to predict ava-
lanche run-up. Nohguchi (1989) has developed a three-di-
mensional dense-snow avalanche centre-of-mass model
based on the equations ofVoellmy (1955),while Sassa (1988)
has developed a geotechnical quasi-three-dimensional conti-
nuum model. Lang and Leo (1994) developed a quasi-three-
dimensional dense-snow avalanche model. However, accord-
ing to the originators it is still unknown whether the model
can represent naturally occurring events.

Effect of natural deflecting dams on reported avalanches
are described by Harbitz and Domaas (1997).The obser-
vations indicate that the height difference between the gully
floor and the upper limit of extension on deflecting terrain
formations might exceed 60 m for large avalanches (esti-
mated volume> 100000 m3

) reaching a velocity of more
than 40 m s-l in the avalanche track.

In this paper, we present two models of snow avalanches
impacting on retaining dams at oblique angles of incidence.
The first is a centre-of-mass model based on aVoellmy type
of resistance force. In the second model, we extend the
simulation model of Norem and others (1989), for one-di-
mensional avalanche flow parallel to a vertical plane, to ava-
lanche flows following a three-dimensional channel with
varying width. The material model used was first presented
by Norem and others (1987) and a discussion on the impor-
tance of the physical parameters has been given by Irgens
and Norem (1996).

2. CENTRE-aF-MASS MODEL FOR AVALANCHE
MOTION ALONG THE SIDE OF A RETAINING
DAM

A centre-of-mass model for avalanche motion along the side
of a retaining dam was developed by B. Schieldrop (perso-
nal communication, 1996) in co-operation with the Nor-
wegian Geotechnical Institute. Strictly speaking the
centre-of-mass is representative of the frontal part of the
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slide, projected onto the terrain (the total avalanche
centre-of-mass may not even reach the dam). As in the
model of Nohguchi (1989) for centre-or-mass motion on a
three-dimensional surface of arbitrary configuration, the
equations are derived from classical mechanics, including a
resistance force represented by a dynamic drag and a Cou-
lomb friction (as in the Voellmy (1955) model). However, a
lumped-mass consideration does not comprise any dynamic
effects of the avalanche extension. Hence, the model results
will anyhow be encumbered with obvious restrictions. For
these reasons, it was preferable to perform a simplified-geo-
metry study of the influence of avalanche-impact velocity,
terrain inclination, dam configuration, and dam orienta-
tion on avalanche-course deflection and run-up height
along a deflection dam. An additional advantage of a sim-
plified-geometry study is that the deflecting dam does not
have to be superposed on a complex digital terrain.

The simplified geometry consists of a plane terrain of in-
clination b and the upper plane wall of the deflecting dam,
oriented by its angle relative to the terrain, y, and the angle
between the base line of the wall (the x axis) and the terrain
contour Jines, j, Figure 1.

Fig. 1. Simplified geometry configuration for centre-of-mass
model.

The tangential and normal components of the centre-of-
mass momentum equations are

dv . 2
dt =gxCOs¡-gysin¡-z-D/Mu (l)

and

u2

R = gx sin "I - gy cos ¡ (2)

respectively, where u is the centre-of-mass velocity at time t,
gx = gsinßsincp, gy = -g(cosßsin'ljJ - sinßcoscpcos'ljJ),
and gz = - g( cos ß cos 'ljJ+ sin ß cos cpsin 'ljJ) are components
of the gravitational force per unit mass, g, in the upper wall
plane, gx along and gy normal to the base line respectively,
while gz is the component normal to the wall plane. ¡ is the
angle between the centre-af-mass path tangent line and the
base line, ¡.t is the dry-friction coefficient, M/D is the mass-
to-drag ratio described by Perla and others (1980\ and R is
the radius of curvature of the centre-of-mass path line on the
wall. By means of the kinematic condition u2 / R = -u( d] dt)
and the transcription (dv/dt = (du/d¡)(d~¡fdt), Equations
(l) and (2) can be combined into:

du (g" eos ¡ - gr sin ¡ - ¡.tg, - D/M u2)u
dÎ' = - (g" sin ¡ + gr cos Î)

(3)

which is solved numerically by a fourth order Runge-Kutta
procedure. The angle Î is reduced by constant increments d~f



throughout the simulations. For each new pair of (1/, ,)

values, the centre-of-mass is moved a distance ds = 1/ dt
along the upper wall in the direction determined by the value
of ,. The time increment dt = -1/ d, j (gx sin, + gy cos ~/) is
found by combining Equation (2) and the kinematic condi-
tion above.

Also the effects of energy loss due to impact may be in-
vestigated. Without any loss, initial values are 'o = 7r j2 - cp
and I/o= lIT, where lIT is the centre-of-mass velocity imme-
diately before impact. If the centre-of-mass velocity compo-
nent normal to the upper wall is lost during the impact,
initial values are 'o =, tan -1 (cos øj tan cp) and I/o = I/T

(sin2 cp+ cos2 cpcos2 Ø)'i·

3. ONE-DIMENSIONAL CONTINUUM MODEL
FOR THREE-DIMENSIONAL AVALANCHE FLOW

3.1.Physical and rrrathern.arica.l model

The avalanche channel path is approximated by a set of
volume elements with varying widths, compensating for
converging and diverging effects in a real avalanche flow.
Furthermore, horizontal centrifugal effects due to the cur-
vature of the horizontal projection of the path are taken into
account. A preliminary version of the simulation proce-
dure, in which the centre-line of the avalanche path had to
be specified prior to the simulation, has been presented by
Irgens (19th ICTAM, Japan, August 1996, to be published).
The main feature of the model is the fact that the centre-line
of the avalanche is a space curve, which is determined by
the terrain and in the present improved version also by the
dynamics of the flowing material. This is in contrast to the
three-dimensional model of Sassa (1988) and Lang and Leo
(1994), where the centre-line is a curve in a vertical plane.
Tentative two-dimensional models for three-dimensional
dense snow avalanche flow are being developed at the Swiss
Federal Institute for Snow and Avalanche Research (perso-
nal communication, U. Gruber, 1997) and CEMAGREF,
France (personal communication, M. Naaim, 1997).

A representation of the three-dimensional avalanche to-
pography is shown in Figure 2. The geometry of an ava-
lanche channel is defined by a preliminary centre-line
space curve and terrain profiles in cross sections perpendi-
cular to this line. The centre-line is specified by a selected
number of path points, QI, .. , Qn, at the bottom of the
profiles and defined by Cartesian coordinates (X, Y, Z).
The projections of the centre-line in the XY- and XZ-
planes are replaced by cubic splines. The centre-line is then
subdivided into a chosen number of subsegments by station
points, Pl, .. , Pm·

The cross-sectional terrain profile at each path point Qi
is approximated by a circle of radius Ri (X) as shown in Fig-
ure 3.The radii RI, .. , Rm of similar profiles at the station
points, PI, .. , Pm are found from a cubic spline through
points with Cartesian coordinates (X, R) for the path
points, QI, .. , Qn. By this procedure the real avalanche
channel is replaced by a set of elements between the cross-
sectional profiles. The avalanche of the flowing material is
defined by a subset of these elements filled with snow. The
height of the snow is given by hi (X, t) at the station points
Pi. The circular terrain profile shown in Figure 3 represents
the terrain profile both at the path points, Q, .. , Qn and the
station points, Pl, .. , Pm.

The profile of the flowing material through the cross sec-

Irgens and others: Simulations if dense-snow avalanches

y

,
,
,

,,,,,,~
On

....... , .x

z
Fig. 2. Centre-line if three-dimensional avalanche. QI, ... ,
Qn are the path points defining the centre-line. XY is a ver-
tical plane, and X Z is a horizontal plane. The x axis is in the
direction if theflow. The xfj plane is vertical. rP is the angle if
flow inclination witlz respect to the horizontal plane. D'x is the
slope if the projection if the avalanche centre-line in the X Z
plane with respect to the X axis. g is thegrauitationalforce per
unit mass.

tion is approximated by a circular segment. Due to centrifu-
gal forces the trace of the free surface in the cross section will
be inclined with respect to the horizontal plane. The angle
of inclination ()defines the origin of the local coordinate sys-
tems xyz and xyz as shown in Figure 3.The x axis is tangent
to the path curve, and the xfj plane is vertical. The origins

z

Fig. 3. Circular segment cross-sectional profile at apath point
Q or a station point P. P is the adjusted station point. e is the
angle if inclination if the profile, bxz is the centrifugalforce
per unit mass in the X Z plane, h is the height of thefloto and
is determined by theflow. tu is the computational width if the
corresponding rectangular profile, and is determined ~)I h and
the radius R tuI is the width if the circular segment.
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are taken to be adjusted station points ?¡with new global co-
ordinates (X¡, Yi l Z¡) for the calculated centre-line of the
avalanche. The circular-segment cross section of the flowing
material is further replaeed by a rectangular cross section of
height h and computational width w, and with the same
cross-sectional area A as the circular cross section. The
assumption of a circular-segment profile implies an inter-
dependence between the flow width WI(X, t) and the flow
height h(X, t). The slope ax and the curvature "'xz in the
horizontal XZ plane, and the slope cp and the curvature
"'xY in the vertical xi) plane are all computed from the coor-
dinates of the stations P¡ and based on central-difference for-
mulas.

The projected curved motion of the flowing material in
the XZ plane is responsible for a horizontal centrifugal
force component bxz per unit mass.

bxz = (lia cos cp)2 "'xz (4)

where lia is the average velocity through the cross section of
the flow. Due to this centriCugal [orce the free surface of the
flowing material will be inclined with respect to the hori-
zontal z axis at each station profile. The gravitational [orce
g per unit mass has a driving component g sin cp in the x di-
rection and a component g cos cp in the y direction. To the
latter component we add a centrifugal-force component in
a vertical plane

bxy = (lia cos cp)2",xy
The effective gravitational foree, ge, in the yz plane is the
resultant of these forees

ge = j (g cos cp + bxy) 2 + bb

This body foree defines the angle of inclination e of the free
surface of the avalanche, which is determined from

(
bxz )e = arctan cp bgcos + xy

This angle determines the di rections of the coordinate axes
y and z in the yz plane. The flow is now considered to be
two-dimensional with the velocity field given by the two
components lIx(X, y, t) and lIy(X, y, t).

For the sake of simplicity, the complete version of the
simulation model presents two special options as alterna-
tives: (l) For highly cohesive material extensional flow with
a uniform streamwise velocity /.Ix = VO(X, t) is assumed.
The constitutive equations contain terms representing
active- and passive-pressure contribution. (2) When cohe-
sion may be neglected, shear flow and the no-slip condition
lix = O on the bed surfaee y = O are assumed. On the free
surface, y = h(X, t), the normal stress must be equal to the
atmospheric pressure, which is assumed to be equal to the
pore pressure Pu, and the shear stress must be zero. The con-
stitutive equations do not produce active- and passive-pres-
sure terms in this case.

3.2.Constitutive m.odel

A general discussion of the constitutive model may be found
in Norem and others (1987, 1989). For a two-dimensional
steady gravity-driven shear flow the equation of motion in
the stream wise direction yields the velocity field

lIx(Y)=1I0+lIl[1- (1_*)'~"] (8)

where 1I0 is the velocity at the bed surface, 1I1 is the velocity
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of the free surface and n is a material power-law exponent.
The relevant shear and normal stresses for this flow in the x
and Y directions are

( (
ållx) n

Txy = a + f.LPe)+ pm åy (9)

ax= -(Pu+Pe)+p(ml-m2) (Zx)n
n Y (10)

( (ål/X)ay = - Pu + Pe) - pm2 ay
The material properties of the model are specified by the
cohesion parameter a, the coefficient of dry friction ¡J., the
shear viscosity m, the exponent n, and the two visco-elasti-
cities ml and m2, representing the effect of normal stress
differenees. Pe is the effective pressure and p is the density
of the snow.

3.3.Num.erical sim.ulation

(5)

It is assumed that the equation of motion in the y direction
may be approximated by an equilibrium equation, which
may be integrated to

ay = -Pu - pge(h - y) (11)

An expression for the effective pressure Pe is obtained by a
comparison of Equations (11) and (10). The velocity in the
streamwise direction lIx(X, Y, t) is assumed to be approx-
imately given by the steady-state function in Equation (8),
where the velocity of the free surface 1I1 is now assumed to
be a function of X and t. The equation of motion in the
streamwise direction and the continuity equation are inte-
grated in the Y direction. The assumed velocity profile
I/x(X, Y,t) is substituted into the integral equations. From
previous two-dimensional simulations, it is known that
with reasonable parameter values, the results are more or
less similar for case Iand case 2, referred to in section 3.1.
For case 2, which is more easily implemented in the numer-
ical model, the following differential equations are
obtained

(6)

(7)

alla l { .[ (1+2n)] nBt = h hgsin cp - hf.Lge - (m - bm2) lia nh

+ lia å(whl/a) _!._~ [2Whll;(1 + 2n)]
W åx wåx 2 + 3n

å [h2 (lIa(1+2n))nh]}+- -ge-+ml -åx 2 nh 2
(12)

åh
åt

1 å(whva)
w+ hF1 åx

(13)

where

F; ~ [~J'[[1+~)V2~- [~J'
- arcsin V2 ~ - [~) 'J (14)

and

(l + n)1I1 .
lia = 1+ 2n (15 )

To determine the motion, the equation o[ motion (12) to-
gether with the continuity equation (13) and the geometri-
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Fig. 4. Simulations if the 1986 Vassdalen avalanche bJIthree-dimensional continuum model (dolled line J compared with the
observations made (solid line J. All angles and lines are horizontal projections. Location if observed maximum run-up height,
measured in a vertical crosssection perpendicular to the horizontal projection if the base line if the natural deflecting dam, in-
dicated. Contour-line interval is 2m.

cal relation between the flow height and the flow width pro-
vide three equations for the three unknowns V«, h, and w.
The partial differential equations are solved by a finite
difference scheme with spatial central differences in the
streamwise direction, and by a fourth order Runge-Kutta
procedure with respect to time. The finite-difference scheme
is Eulerian, requiring the following special procedure to
make the avalanche progress along the path: The volume
of snow passing through the front section at station Pr fills
the downstream subsegment, where the subscript f denotes
the number of the contemporary front station. When the ac-
cumulated volume exceeds the current value of the volume
hr·wr·6.xr+l, where 6.xr+l is the distance between the sta-
tions Pr and Pr+1, it is assumed that the avalanche front
has advanced one subsegment. A similar procedure is
applied to the tail of the avalanche.

Initially the snow is assumed to fill a certain number of
volume elements and is at rest. The origins of the local coor-
dinate systems xyz are located at the station points P. As the
motion starts and new volume elements are filled with snow,
the origin P of the next front station is determined by the
angle e from Equation (7).The result is an avalanche that
finds its path according to the terrain and the dynamics of
the flow. The width WI of the circular segments in Figure 3
are found from a geometrical formula relating h, R, and WI·

The computer program is developed for personal compu-
ters.

4. THE 1986 VASSDALEN AVALANCHE

4.1.The observed avalanche

Extreme snow fall combined with strong winds and a cold
period during the first part of the winter followed by temp-
erature variations were the main triggers for the dry-snow
avalanche in Vassdalen, Narvik, northern Norway on 5
March 1986. 16 soldiers were killed in the avalanche, which
was therefore reported extensively (Lied, 1988).The map-
ping of the avalanche was accomplished shortly after the
event, and was based mainly on location of snow deposits
and injuries on the birch forest. The deposited snow masses,
the severe deflection of the avalanche course, the eye-
witnesses accounts, and the limited extension of the injuries
all indicate that this was a dense dry-snow avalanche with
an insignificant powder-snow cloud. For these reasons, the
1986 Vassdalen avalanche serves as a well-defined full-scale
experiment regarding avalanche travel path and extension.

The fracture line of the avalanche was located 475m
a.s.l. The approximately 100m wide release zone has an up-
ward concave transversal terrain profile and an average in-
clination of 35.5° above 375 m a.s.l. (Fig. 4). The terrain
inclination along the base of the natural deflecting dam is
approximately ß = 26.5Ø The angle between the base line
of the wall and the terrain contour lines is estimated to
<p = 50°. In the region where the avalanche obtains its max-
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imum run-up height, the line of steepest descent along the
upper wall of the dam has an inclination of as = 33°. The
deflecting terrain in the lower half of the track caused an
absolute maximum run-up height above the base line of
the wall of about 25 m measured in a vertical cross section
perpendicular to the horizontal projection of the base line of
the natural deflecting dam.

4.2. The sirrrulared avalanche

4.2.1. Simulations by centre-cif-mass model
Input values ,8 = 26.5°, <p = 50°, as = 33° and VT =
28 m s-l (where the velocity is deduced from the three-di-
mensional simulations described below), give 'I/;= 44.6°.
Hence the simulation of the centre-of-mass motion along
the wall including energy loss due to impact starts with de-
duced values 1/0 = 25.0 m S-l and 'Yo = 30.9°. With J.L = 0.2
and M/D = 500 m (chosen clearly within the documented
possible range of these values), the maximum calculated
run-up height of the centre-of-mass above the base line of
the deflecting dam, measured along the terrain in a cross
section perpendicular to the base line of the natural deflect-
ing dam, is Ymax= 16.0 m (Fig. 5). This corresponds to a
maximum vertical run-up height above the base line of the
deflecting dam, measured in a vertical cross section perpen-
dicular to the horizontal projection of the base line of the
natural deflecting dam, ofrmax = 7.7 m, where

r = y(sin'I/; cosß - cos 'l/;sinß cos <p + tançsin<psinß)

and

ç = cos-1 [(g; + g~)(l- g~g2 - g~g~)-4] .

This is the run-up height estimated from maps and intui-
tively pointed out in the terrain, and also the most conveni-
ent height in dam design.

Without energy loss due to impact, va = 28 m s-i and
'Yo = 40.0°. The corresponding maximum run-up height is
now Ymax= 29.5 m or Tmax= 14.1 m.

Fig. 5. Principal sketch cif run-up heights on deflecting dam.
Curved dotted line indicates outer extension cifavalanche flow
on the waLLcifthe dam. y is the run-up height measured along
the terrain in a cross section perpendicular to the base line cif
the dam, while r is the vertical run-up height measured in a
vertical CTOSS section perpendicular to the horizontal projection
cif the base line cif the deflecting dam.

4.2.2. Simulations by three-dimensional continuum model
The input values to this model were chosen to give reason-
able agreement between the simulated avalanche and the re-
corded path and the run-out distance of the real avalanche.
The material parameters are: p == 300 kg m-3, J.L = 0.4,
m = 0.00146 m2

, ml = 0.01-14 m2
, m2 = 0.00144 m2 and
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n = 2.0. Ten path points were chosen to describe the
centre-line of the preliminary path. The radii R of the com-
putational cross sections near the initiation of the avalanche
and the run-out zone had to be estimated on the basis of the
recorded width of the real avalanche. The fracture width
and the curvature of the uppermost computational cross
section implicitly define the fracture-height area.

5. CALIBRATION AND COMPARISON OF MODEL
RESULTS

For the centre-of-mass model a natural first assumption is
that the centre-of-mass should reach half the run-up height
observed in the terrain. This assumption is valid when the
whole avalanche is climbing the wall of the deflecting dam
with the masses equally distributed on both sides of the
centre-line. Relatively good agreement with these condi-
tions was one of the reasons why the Vassdalen avalanche
was chosen for back calculations.

As described in section 4.2.1., the maximum run-up
height calculated by the centre-of-mass model without
energy loss due to impact is 14.1 m, while the corresponding
observed maximum run-up height was 25 m (Fig. 4), i.e.
close agreement with the assumption above. Including
energy loss due to impact reduces the calculated run-up
height to 7.7 m. Probably the correct maximum centre-of-
mass run-up height is somewhere in between these extreme
limits. The avalanche masses were probably distributed
more towards the base of the deflecting terrain than indi-
cated by a centre-line, hence reducing the upper value of
14.1 m. On the other hand, due to snow compressibility and
smooth terrain conditions, the lower extreme of7.7 m based
on total neglect of the centre-of-mass velocity component
normal to the upper wall during impact, is probably too
small.

Figure 4 shows the result of the simulation with the
three-dimensional continuum model. In comparison with
the recorded real avalanche the simulated avalanche is too
sensitive to centrifugal effects. This may be due partly to the
fact that a very crude approximation to the avalanche chan-
nel is used. The simulated avalanche channel in Figure 4 de-
monstrates the main features of the model: the centre-line is
determined by the centrifugal effects; and the width of the
avalanche is governed by the topography of the terrain.
The maximum flow height is initially 3 m, and increases to
4.5 m at the major bend, and becomes finally 3.5m in the
run-out zone.

6. CONCLUSIONS

The 1986 Vassdalen dense dry-snow avalanche is back
calculated both by a centre-af-mass model applying the
Voellmy-Perla equation, and a quasi-three-dimensional
continuum model applying one-dimensional depth inte-
grated equations of mass and linear momentum. The
centre-of-mass path line calculated by the centre-of-mass
model is in close agreement with the observations when
energy loss due to impact is neglected. The model is applic-
able for studying the influence of terrain inclinations,
impact velocity and dam configurations on the avalanche
centre-af-mass path line. However, the model results are
still encumbered with uncertainties, even though the para-
meters describing the features above are included. Whether



the whole avalanche is climbing the wall depends on the
same features. If a considerable part of the avalanche is not
climbing the wall, the simulations should be made by con-
sideration of a characteristic width of the slide representing
the climbing fraction of the slide only. However, it is cum-
bersome to define an objective criteria for calculation of
such a width. Besides the Interaction with the masses not
climbing the wall, being deflected or not, should also be
taken into account. Hence, for future design of deflecting
dams, there is hardly any alternative to (quasi) three-di-
mensional simulations.

The three-dimensional continuum model has in its pre-
sent version several deficiencies. It may be difficult to model
the terrain satisfactorily using the proposed avalanche
channel. In future work a better approximation to the
cross-sectional profiles will be attempted. From the present
simulation it is clear that the model is too sensitive to centri-
fugal effects. The cubic-spline approximation of the centre-
line has unwanted consequences, as it sometimes introduce
ripples in the centre-line which give rise to unrealistic cur-
vatures and centrifugal effects.
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