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1 Introduction 

The Norwegian building code regulates the societal acceptable risk from avalanches for 
three building classes (S1, S1, and S3). The corresponding highest allowed nominal 
annual probabilities of avalanches reaching the building for these classes are set as 
1/100, 1/1000 and 1/5000 respectively (TEK17, 2017). That is, avalanches should not 
reach a building, or the accompanying outdoor area and cause (considerable) damage 
more often than the building class permits. These hazard classes are used for delineation 
of avalanche hazard zones for land use planning (TEK17, 2017).  
 
For the assessment of the quantitative risk of avalanches reaching existing settlements 
only limited methods are available. Thus, historical observations can be of special 
importance, as they may be direct indicators for the real hazard in the area of interest. 
To a certain degree, they can also provide an indication of a possible change of hazard 
over time due to environmental changes. However, historical observations are affected 
by inherent uncertainties and many questions remain open.  
 
Here, we aim to combine results from several work packages to develop a more 
consistent method of using historical observations that may help improve quantitative 
hazard assessments and evaluation of the uncertainties involved.  
 
 
2 Research goals 

The avalanche hazard is affected by several factors, for example: 
 terrain (slope, shape, exposure, ...)  
 ground conditions  
 vegetation (ground cover, density of forest, ...) 
 precipitation (frequency, intensity, snow or rain, ...) 
 the influence of the wind (drift snow deposition, intensity of loading, or 

cornices)  
 snow cover properties (maritime versus continental climate, ...)  
 runout length for avalanches 

All these parameters have variations that can be described by probability distributions. 
In hazard assessments, the task is to determine the location of a boundary that delineates 
a zone with a given nominal annual exceedance probability. To this end, a common 
simplification is often used to quantify the annual avalanche hazard / avalanche 
probability Haz(s) for an area at the location s that is to be assessed (e.g. McClung, 2000; 
Schläppy et al., 2014): 

 ( ) R sHaz s P P . (1) 

Here, PR denotes the avalanche probability (or frequency, PR ) for avalanches with a 
runout length longer than a threshold s0 and Ps denotes the probability that the avalanche 
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also reaches or passes the area of interest at the location s (the probability of exceeding 
s). The runout length, s, is measured along the terrain profile of the avalanche path. 
 
The research goal is to quantify the uncertainty involved in the delimitation of hazard 
zones in the light of historical events using Eq (1). Eq (1) combines two probabilities, 
which both are fraught with uncertainties. The uncertainties in the delimitation of hazard 
zones can be temporal as well as spatial.  
 
 
3 Methods 

To demonstrate the uncertainties involved in the hazard assessment, we deploy a 
fictitious example (but with a realistic background). For simplicity, let us assume a 
parabolic track. Furthermore, without loss of generality, let us assume that the mean of 
the observed runout distances corresponds to the α-point (Lied & Bakkehøi, 1980) at 
the location sα along the track and that average return period (i.e. the reciprocal of the 
probability) corresponding to this mean is about 100 years, (i.e. Haz(sα) = 0.01). We also 
assume an observed avalanche history for the track reaching back to the year 1650.  
 

Table 1 Fictitious avalanche history (HSC is the total potential drop height of the track). 

date observed runout length s  
scaled by HSC 

observed drop 
height ΔH  
scaled by HSC 

retarding 
acceleration aret 
scaled by g 

1665-12-28 2.391 1 -0.418 
1741-12-10 2.427 1 -0.412 
1795-01-27 2.017 0.99 -0.486 
1818-02-22 2.576 1 -0.388 
1858-01-12 2.006 0.98 -0.488 
1952-03-21 2.010 0.98 -0.488 
1958-12-19 2.038 0.98 -0.483 
1990-02-11 2.257 1 -0.443 

 
In our example, the runout distribution of the mean retarding acceleration:  
 
 ret

Ha g
s
∆

= − , (2) 

follows a Gumbel-type extreme value distribution, which is often a reasonable 
approximation in the runout area of major avalanches (c.f. NGI 20170131-17-R, chapter 
3.2). ΔH is the drop height, g the gravitational acceleration, and s is a given location 
along the track. However, the principal approach is not limited to a special distribution.  
 
We also assume that the record is complete for all avalanches that surpassed a line at s0 
(in our example s0 ≈ 1.57HSC). 
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According to Eq. (1) the determination of the avalanche hazard/probability Haz(s) at a 
location s is depending on two probabilities, the avalanche frequency and the runout 
probability distribution.  
 
Based on our data, we derive an estimate on the avalanche frequency and the runout 
probability distribution and corresponding confidence intervals. Using these estimates, we 
present different approaches to estimate the associated uncertainties for the avalanche 
hazard at a location s, which can be interpreted as either spatial or temporal fuzziness. 
 
 
4 Results 

 Avalanche frequency,  
In our example, we consider eight major avalanches observed in the period between 
1650 and 2021. This corresponds to a mean return period for avalanches surpassing the 
reference level s0 of about 45 years. Figure 1 shows the calculated annual avalanche 
frequency  based on those avalanche events and the corresponding 90%-confidence 
interval. The calculation follows the method suggested by Mudelsee (2020, Chapter 3), 
which also involves data sampling/bootstrapping to calculate the confidence interval. 
The occurrence rate/ avalanche frequency is calculated as:  
 

 
m

1
event

j 1
(T) h K T T ( j) / h ,  (3) 

 

where h is the bandwidth, K is a suitable kernel function (e.g. a Gaussian kernel), m is 
the number of observed events and T are the dates of occurrence. 
 

  
Figure 1 Estimated avalanche frequency  over time. The gray area indicates the 90%-
confidence interval. 
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The calculations suggest that with 90% confidence the avalanche frequency in 2021 is 
between 0.0115 and 0.0391 per year, with an expected value E( ) = 0.0251 a-1. This 
corresponds to a return period between around 26 and 87 years with an expected return 
period of about 40 years. In this example, the overall expected return period has been 
increasing slightly over time, with a return period of about 43 years ( 10.0233a ) at 
the present time.  
 

 
Figure 2 Estimated avalanche frequency  over time for all avalanches surpassing s = s . 
The gray area indicates the 90%-confidence interval. 

 
Approach T0: Figure 2 shows the calculated annual avalanche frequency  based on 
those avalanche that surpassed a reference level s=s . In this case the expected frequency 

 in 2021 is 0.0091 per year (RT   109 years) and the corresponding 90% -confidence 
interval is CI  [0.0026, 0.01569] per year (CIRT  [64, 389] years). 

These examples show that, although relatively many observations are available, the 
uncertainty defining the actual avalanche return period can be considerable due to the 
randomness in the occurrences.  
 

 Avalanche runout probability of exceedance, Ps 
Ps denotes the probability that the avalanche also reaches or passes the area of interest 
at a location s (i.e. the probability of exceeding s) and is given by:  

 0 r(1 ( | )) 1 Ps oP F s s s , (4) 
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where, 𝐹𝐹(𝑠𝑠|𝑠𝑠≥𝑠𝑠0) is the cumulative distribution function (CDF). Figure 3 shows the 
probability plot of aret in our example derived from the observations. aret is related to s.  
 

 
Figure 3 Probability plot of aret. The solid line shows the best fit and the dashed lines the 90%-
confidence interval. 

 
As stated above, in this example, we assume a Gumbel extreme value distribution in 
which case the quantile function is given by: 
 

 ( )( )r o e e r oQ(P ) ln ln P= µ −β ,  (5) 
 

where µe is the location parameter and βe (> 0) is the scale parameter. The determination 
of both is also fraught with uncertainties. For the Gumbel distribution the following 
relations hold true:  
 e emedian ln(ln(2))= µ −β   (6) 
and  
 e emean = µ + β γ , (7) 
 

where the Euler–Mascheroni constant γ = 0.5572. Per definition, the probability Pro 
corresponding to the median is 0.5 and Eq. (7) implies the probability Pro corresponding 
to the mean is 0.5704. Using Eq. (6), the retarding acceleration corresponding to Pro can 
be written as 

 ( )= − − − −β( ) ( ) ln( ln( )) ln( ln(0.5))ret ro ret e roa P M a P , (8) 
 

where M(aret) is the median of the observed aret. 
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 Uncertainty 
Based on our initial assumptions Pro = 0.5704 and 0.233 , in which case the mean 
avalanche hazard/probability at the location s  is  
 

 s r oHaz(s ) P (1 P ) 0.01,  
 

as assumed. Eq (1) allows a closer look at the influence of the individual uncertainties. 
To this end, we also consider the variations  
 

r o

Haz(s)
1 P

(9) 

and  
 r o

Haz(s)P 1   (10) 
 

All cases presuppose that Haz(s) . To compare the uncertainty regarding the return 
period, we consider the reference location s = sB of the expected position of boundary 
that delineates the zone with a given annual exceedance probability. 
 

 Spatial uncertainty due to uncertainty of the avalanche 
frequency 

Approach S1: In a first step, we look at the spatial uncertainty in determining the 
position sB1/100 corresponding to the boundary that delineates the zone with probability 
Haz(sB1/100) = 1/100. We assume that in addition to the mean retarding acceleration 

ret(a g 0.456) , also know the scale parameter e is known ( e.= 0.0242). As 
described above in our example, the calculated 90% confidence interval of the return 
period in the year 2021 ranges between 0.0115 and 0.0391 per year.  
Now using Eq. (10), we obtain r oP [0.128,0.7442]  and further by using Eq. (8), 

reta g [ 0.4874, 04404] , which can be related to a upper limit su1/100 and a lower 
limit sl1/100  for position the boundary. In our example, the difference in the runout length 
is then l1/100 u1/100 SC B1/100 SCs s H s H 0.26 , which is the width of the uncertainty 
range. Similarly, we can consider the upper limit su1/1000 and lower limit sl1/1000 of the 
boundary position belonging to Haz(sB1/1000) = 1/1000, in which case we obtain a 
difference of 

B1/1000 SCs H 0.19 . 
 
Figure 4 depicts the example, where the black squares mark our fictious observations 
and the dots the so-called - and -point corresponding to the -  model (Lied & 
Bakkehøi 1981).  
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Figure 4 Idealized terrain profile along the avalanche path. For reference, the - and -
point of the -   model (Lied & Bakkehøi 1981) are given. Black squares mark the 
fictious estimates for observed runout lengths. The profile is scaled with total drop 
height HSC. The gray dash-dotted line shows the retarding acceleration corresponding to 
the assumed profile. The solid red vertical line marks the expected boundary position 
E(sB1/100) which delineates the zone with a probability Haz(sB1/100) = 1/100 and the vertical 
blue dash-dotted line the position E(sB1/1000) for Haz(sB1/100) = 1/1000. The vertical red 
dashed lines and the vertical blue dotted depict the positions su and sl of the 90% 
confidence interval of the respective zone boundaries. The triangles depict the 
respective retarding accelerations.  

 
 Uncertainty due to uncertainty in the runout distribution 

Like the estimation of the avalanche frequency of a given set of observation is fraught 
with uncertainty, so is the determination of the runout distribution. Therefore, in the next 
step, we relax our assumption about the exact knowledge of the parameters of our 
Gumbel distribution and assume that only a normal distribution of the respective 

parameter is known. In our case, e N( 0.447,0.0121)  and e N(0.024,0.006) . 
 
We now can use this knowledge in a Monte Carlo simulation to estimate the runout. 
Figure 5 shows the obtained distribution of the retarding acceleration (Eq (8)) versus Pro 

for randomly chosen for e. and e. 
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a)  

b)  

Figure 5 Calculated aret /g depending on Pro for given normal distributions for µe. and βe 
of a Gumbel distribution (blue dots). The dash cyan line depicts the approximated 
cumulative distribution function, and the dotted cyan lines represent the 90% confidence 
interval. a) The red dot marks the expected mean value of the retarding acceleration, that 
corresponds to the expected boundary position E(sB1/100) delimiting the zone with a 
probability Haz(sB1/100) = 1/100. The vertical solid red line marks the 90%-confidence 
interval of all Pro with ( ) retret r oa P a≈ . b) The same as a) expect considering the expected 
position E(sB1/1000) delimiting the zone with Haz(sB1/1000) = 1/1000. 

 
The results of the Monte Carlo simulation can be interpreted in slightly different ways 
in respect to the assessment of hazard zones. 
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4.5.1 Temporal fuzziness 

Approach T1: First, we consider the probability given as ratio of the number of all 
realizations NB with ret ret B1/100a a (s )>  to the total number of simulations Ntot. This 
corresponds to the probability of exceeding the given location sB1/100. In our example, 

B1/100 totN N 0.449≈ . Combining this with the calculated confidence interval of the 
avalanche frequency λ suggests that the annual avalanche probability is in the range 

B1/100Haz(s ) [0.0051,0.0176]≈ , which corresponds to a 90%-confidence interval for 

the return period T B1/100R (s ) [57,195]≈  years. 
 
Approach T2: Another way to look at the uncertainty involved is to consider the 90%-
confidence interval of the realization ( )ret r o ret B1/100a P a (s )≈ , which in our example is  

r oP [0.2536,0.7806]≈ . By combing this with the expected avalanche frequency in 2021 
one obtains a second proxy for the uncertainty of the annual avalanche probability 

B1/100Haz(s ) [0.0051,0.0174]≈  or T B1/100R (s ) [57,196]≈  years.  
 
Similarly, we can evaluate the uncertainties related to the delimitation of the boundary 
position sB1/1000 of the zone with Haz(sB1/1000) = 1/1000. For our example, the ratio of 
number of all realizations NB with ret ret B1/1000a a (s )>  to the total number of simulations 

is B1/1000 totN N 0.052≈ . This combined with the calculated confidence interval of the 

annual avalanche frequency λ suggests 4
B1/1000Haz(s ) [6 10 ,0.0021]−≈ ⋅  or 

T B1/1000R (s ) [488,1663]≈  years.  
 
Or on the other hand using the 90%-confidence interval of the realization 

, 
r oP [0.838,0.983]≈ . Again, combining this with the expected avalanche frequency λ 

in 2021, suggests the that range for the annual avalanche probability 
4

B1/1000Haz(s ) [4 10 ,0.0038]−≈ ⋅  corresponding to a range of return period 

T B1/1000R (s ) [265,2500]≈  years.  
 
4.5.2 Spatial fuzziness 

Approach S2: Now, let us consider the uncertainty in the determination the expected 
boundary position E(sB) delimiting the zone with a probability Haz(sB) is only related to 
the uncertainty in the runout distribution. Figure 6 shows the calculated values of aret/g, 
where the red lines show the 90%-confidence interval for aret of realization for Pro = 
0.5708 and Pro = 0.9571, which would correspond to the expected annual avalanche 
probabilities Haz(sB) of 1/100 and 1/1000 respectively.  
 

( )ret r o ret Ba P a (s )≈
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a)  

b)  

Figure 6 Calculated aret /g depending on Pro for given normal distributions for µe. and βe 
of a Gumbel distribution (blue dots). The dash cyan line depicts the approximated 
cumulative distribution function, and the dotted cyan lines represent the 90% confidence 
interval. a) The red dot marks the expected mean value of the retarding acceleration 
that corresponds to the expected boundary position E(sB1/100) delimiting the zone with 
an annual probability Haz(sB1/100) = 1/100. The horizontal red line marks the 90%-
confidence interval of all ( )ret r oa P .for given r oP 0.5708=  b) The same as a) except 
considering Haz(sB1/1000) = 1/1000 that is r oP 0.9571= . 

 
Figure 6 illustrates the variations of the retarding acceleration aret for a given runout 
probability Pro and therefore the variation of boundary position sB delimiting the zone 
with a given avalanche probability Haz(sB). In this example, the 90%-confidence 
interval for the boundary position sB1/100 delimiting the zone with an annual probability 
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Haz(sB1/100) = 1/100 spans a range of B1/100 SCs 0.23H and the boundary position for 

the zone Haz(sB1/1000) = 1/1000 a range of B1/1000 SCs 0.48H . 
  

 
Figure 7 Idealized terrain profile along the avalanche path. For reference, the -, - and 
(  - ) -point of the -  model (Lied & Bakkehøi 1981) are given. Black squares mark the 
fictious estimates for observed runout lengths. The profile is scaled with total drop 
height HSC. The gray dash-dotted line shows the retarding acceleration corresponding 
to the assumed profile. The solid red vertical line marks the expected boundary position 
E(sB1/100) of the zone with an annual avalanche probability HAZ(sB1/100) = 1/100 and the 
vertical blue dash-dotted line the position E(sB1/1000) of that with HAZ(sB1/1000) = 1/1000 
based on a Monte-Carlo simulation. The vertical red dashed lines and the vertical blue 
dotted depict the positions su and sl of the 90% confidence interval of the respective 
zone boundaries. The triangles depict the respective retarding accelerations. 

 
 Full Monte-Carlo approach for delimiting the hazard zone 

boundary 
In a last trial we relax our previous assumption once more and assume that the estimate 
for the avalanche frequency in 2021 also follows a normal distribution 

(2021) N 0.0252,0.0103 . Now we also include this information in our Monte-
Carlo approach. Again, we can relate the uncertainty involved in the delimitation of 
boundary position sB that delineates the zone with a given probability Haz(sB) either to 
a "temporal" or to a "spatial" one. 
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Approach T3: In the first case, the calculated range for the annual avalanche probability 
at a given position sB1/100 becomes B1/100Haz(s ) [0.0022,0.023]≈  or 

T B1/100R (s ) [44,452]≈  years. 
 
The calculated range for the annual avalanche probability at a given position sB1/1000 

becomes 4
B1/1000Haz(s ) [1.9 10 ,0.0045]−≈ ⋅  or T B1/1000R (s ) [222,5720]≈  years.  

 
Approach S3: In the second case, the 90%-confidential interval for the delimitation of 
the sB1/100 spans a range of B1/100 SCs 0.35H∆ ≈  and for sB1/1000 spans a range of 

B1/1000 SCs 0.62H∆ ≈ . Figure 8 depicts our example applying a full Monte-Carlo approach. 
 

  
Figure 8 Idealized terrain profile along the avalanche path. For reference, the β-,α- and 
(α -σ) -point of the α-β model (Lied & Bakkehøi 1981) are given. Black squares mark 
the fictious estimates for observed runout lengths. The profile is scaled with total drop 
height HSC. The gray dash-dotted line shows the retarding acceleration corresponding to 
the assumed profile. The solid red vertical line marks the expected boundary position 
E(sB1/100) of the zone with an annual avalanche probability HAZ(sB1/100) = 1/100 and the 
vertical blue dash-dotted line the position E(sB1/1000) of that with HAZ(sB1/1000) = 1/1000 
based on a full Monte-Carlo simulation. The vertical red dashed lines and the vertical 
blue dotted depict the positions su and sl of the 90% confidence interval of the respective 
zone boundaries. The triangles depict the respective retarding accelerations. 
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5 Concluding remarks 

The example shows that even with a series of observations over a long time, the 
uncertainty in drawing a boundary line for a hazard zone with a given annual probability 
can still be considerable. The uncertainties can either be interpreted as related to the 
expected return periods or as spatial fuzziness.  
 
Table 2 and Table 3 give a summary of the spatial and temporal fuzziness, respectively, 
as illustrated by the various approaches described in our example.  
 
Table 2 Summary spatial fuzziness 

Approach 
B1/100 SCs H∆  B1/1000 SCs H∆  

S1 0.26 0.19 
S2 0.23 0.48 
S3 0.35 0.62 

 
Table 3 Summary temporal fuzziness (return period RT in years). 

Approach 
T B1/100R (s )  T B1/1000R (s )  

T0 [64, 389]  
T1 [57, 195] [488, 1663] 
T2 [57, 196] [265, 2500] 
T3 [44, 452] [222, 5720] 

 
The calculations above suggest that the estimates of expected return periods solely based 
on historical observations as input for the hazard zoning, even when based on well 
documented events, should be regarded as being within an order of magnitude. This 
interpretation was already made by Mears in 1992. An overly detailed delimitation of 
avalanche hazard zones boundaries based on these estimates can be counterproductive 
because it can give a false impression of accuracy. 
 
The above remark is in many aspects also valid for modelling approaches. This in turn 
suggests that derived nominal probabilities should also regard as being within an order 
of magnitude rather than an exact value.  
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