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ABSTRACT. The reduced societal acceptance of living in regions exposed to snow ava­
lanches, and the increased economic consequences when houses are located within a hazard 
zone, highlight the uncertainty concerning avalanche run-out prediction. The limitations of 
today's zoning procedures are especially pronounced in potential avalanche terrain where 
there are few observations of snow avalanches, where old buildings are present in the potential 
run-out zone, and where the local c1imate does not favour severe snow accumulation. This 
paper combines a mechanical probabilistic mode! for avalanche re!ease with a statistical/ 
topographical mode! for avalanche run-out distance to obtain the unconditional probability 
of extreme run-out distance. For the mechanical mode!, a first-order re!iability method 
(FORM) and Monte Carlo simulations are compared. The interpretation of the statistical/ 
topographical mode! either as an extreme value mode! or as a single value mode! is discussed. 
Furthermore, both a classical approach where the probability of an avalanche occurring is a 
constant, and a Bayesian approach with stochastic probability, are compared. Finally, 
example applications in hazard zoning are presented, with emphasis on how the influence of 
historical observations, local climate, etc., on run-out distance can be quantified in statistical 
terms and how a specified certainty leve! can be found from constructing confidence intervals 
for, for example, the most like!y largest run-out distance during various time intervals. 

l. INTRODUCTION 

Increased human activity in mountain regions, deforestation 
from pollution, forestry and increased number of ski resorts, as 
well as agenerally reduced societal acceptance of risk, have 
caused a growing demand for hazard zoning and avalanche 
protective measures. Enjoined building regulations and the in­
creased economic consequences ofhazard zoning further imply 
an increasing demand for risk quantification including quanti­
fication of the uncertainty of the estimat es. This is a great chal­
lenge, especially in potential avalanche terrain where there are 
few observations of snow avalanches, where old buildings are 
present in the potential run-out zone, and where the local 
climate do es not favour severe snow accumulation. 

According to the Norwegian building regulations, the 
"safe" areas in the snow-avalanche-prone regions of Norway 
are those areas where the nominal annual probability of a house 
being hit by an avalanche is <10-3

• The term "nominal" implies 
that the probability cannot be exactly quantified and reflects 
the uncertainty of the estimat es. Alternative!y, safety can be 
linked to impact pressure (Salm and others, 1990; McClung 
and Schaerer, 1993) and to vulnerability and survival prob­
ability (Keylock and others, 1999; J6nasson and others, 2000; 
Keylock and Barbolini, in press). 

In practice, the avalanehe expert estimates contour lines of 
specifie annual probabilities, based on the local climatie eon­
ditions, topography and knowledge of the average frequency of 
avalanche occurrence, in combination with statistical and/or 
dynamics mode!s for prediction of run-out distanee, ve!ocity 
and impaet pressure. 

Various statistical mode!s for run-out distance calcula­
tions bas ed on the terrain profile have been presented (Lied 
and Bakkehoi, 1980; Bakkehoi and others, 1983; McClung and 
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Lied, 1987; MeClung and Mears, 1991). Keylock and others 
(1999) also take into account the interaction of variable ava­
lanche width and differences in avalanche trajectory. Section 
2 presents the statistical/topographical 0:/ fl model (Lied and 
Bakkehoi, 1980; Bakkehoi and others, 1983) applied in this paper 
for run-out distanee calculations. Such models return a condi­
tional probability distribution of extreme run-out distanee, 
given that a major avalanche oceurs. To obtain the uncondi­
tional annual probability distribution, one needs also to esti­
mate the annual probability of release of an avalanche. Hence, 
the "aetual" annual probability is the run-out exeeedanee prob­
ability computed from statistieal/topographical mode!s times 
the annual probability of avalanche re!ease in a given area. 

Meehanieal mode!s for avalanche release based on a 
strength-to-Ioad ratio have been present ed by, for example, 
Perla (1975), Sommerfe!d (1980), Fcihn (1987), McClung (1987) 
and MeClung and Schweizer (1999). In section 3.1, mode!s 
based on the mechanics of slab avalanehes and structural 
re!iability methods or Monte Carlo simulations are applied 
as a basis for calculating the annual probability of avalanche 
release. A probabilistic approach was presented by Conway 
and Abrahamson (1988). In seetion 3.2 an alternative statis­
tical mode! based on observations is presented. 

Section 4 explains how statistical/topographieal run-out 
mode!s can be combined with re!ease probability mode!s in 
hazard zoning. Alternative!y, the run-out distance may be cal­
culated by integrating statistical and dynamics mode!s (Bar­
bolini and others, 2000), or combining simple and more 
advanced mode!s (Harbitz and others, 1998), and henee redu­
cing the subset of permissible parameter values to a tolerable 
leve!. Barbolini (1999) evaluates the uncertainty of made! 
results further, and discusses probability distribution funetions 
for the input parameters of the release and dynamies modeis. 
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Fig. 1. Topographic parameters describing terra in profile. 

Some recommendations for future hazard zoning proce­
dures are included in the conclusions. 

2. EXTREME RUN-OUT DISTANCE PREDICTION 

2.1. Statistical/topographical Illodel 

The statistical 0:/ f3 model (Lied and Bakkehøi, 1980; Bakkehøi 
and others, 1983) predicts the extreme run-out distance for a 
snow avalanche solely as a function of topography. The run­
out distance equations are found by regress ion analysis, corre­
lating the longest registered run-out distance from 206 
Norwegian avalanche paths to a selection of topographic 
parameters. The parameters that have proved to be most sig­
nificant are present ed in Figure 1. 

The average inclination of the avalanche path between 
the starting point and the point of 100 inclination along the 
path profile, (3, is empirically found to be the best character­
ization of the track inclination. The regression analysis 
revealed that the (3 angle is also the most important topo­
graphie parameter. In fact, it appears that, in general, (3 is 
the only statistically significant terrain parameter. A (3 point 
is accepted only ifit is inside the section of the profile where 
the angle between the tangent of the best-fit parabola at the 
(3 point and the horizontal pl ane is 5-15 o. The model is most 
appropriate for analysis along longitudinally concave 
profiles. The run-out distance is represented by the ave rage 
inclination of the total avalanche path, a. 

The calculated run-out distances are those that might be 
expected under snow conditions favouring the longest run-out 
distances. The assumption of small variations in the physical 
snow parameters giving the longest run-out distance is only 
valid within one climatic region. 

The usual form of the 0:/(3 model for a random o: value is 
o: = a(3 + b + W, where a and bare regression parameters 
and W is a normal N(O, a) variable. Based on 206 (o:, (3) 
observations, the estimated values for the unknown par­
ameters are a* = 0.96, b* = -1.40 and standard deviation 
a* = 2.3 0 (where * is used as a general superscript for an 
estimator), i.e. 

o: = 0.96(3 - 1.4° + W, W rv N(O, 2.3°) . (1) 

The empirical correlation coefficient between the 
observed a and (3 values is 0.92. No apparent deviation from 
the standard assumptions ofindependent residuals with con­
stant variance independent of (3 is seen from residual plots 
(the residuals are the difference between observed o: values 
and the o: value from the fitted regression line at the (3 values 
corresponding to the o: observations). However, the fre-
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quency histogram of the residuals indicates a skew distribu­
tion with the heaviest tail towards small o: values. This raises 
the question whether the assumption of a normal residual 
distribution is correct. Regardless of residual distribution, 
the angle (3 must be within the range where the model is rea­
sonable. In addition, the number of observations is assumed 
to be large enough for the uncertainty of the regression line 
itselfand the uncertainty of the standard deviation onv, a, 
to be negligible. 

The appropriate interpretation of the 0:/(3 model with 
respect to hazard zoning is not obvious. This is partly due to 
the fact that mostly there is onIy one o: observation recorded 
for each path, and partly due to the scarcity of knowledge 
about the actual observation period and the number of ava­
lanches that have occurred. It is therefore difficult to know if, 
for example, a reflects the variation of possible a values for 
each specific path, or if a reflects the variation among paths 
due to topographical or other reasons. These two aiternatives 
are further diseussed in sections 2.2 and 2.3. 

Based on an analysis of 45 Icelandic events, J6hannesson 
(1998) found that the intercept term is statistically insignifi­
cant, and that the equation without intercept for a modified 
and trimrned dataset of 192 Norwegian events reads 
a = 0.93(3 with standard deviation of 2.1 0. Even though 
the latter equation is mathematically simpler, it was decided 
to apply the more general and well-known Equation (l) in 
this context. A more complete description of the 0:/(3 model 
is presented by Harbitz (1998). 

2.2. ExtreIIle-value Illodel 

Ifthe observed o: value is the most extreme run-out angle for 
N avalanches, 0:1, ... , aN, that have occurred in one single 
path, then the assumption of a normal W distribution is 
not realistic. In this case the Gumbel distribution is an 
actual extreme-value distribution for W for sufficiently 
large N. Let fdenote the distribution of the individual o: 
values 0:1, ... , aN. The Gumbel distribution is the appropri­
ate asymptotic extreme value distribution for a range of dif­
ferent f's, among them the normal distribution (Galambos, 
1978). A consequence of such an extreme-value interpret­
ation is that the regression line is dependent on N, which 
increases with observation period and conditions favouring 
avalanches. 

Assurne that the actual (o:, (3) observations are based on 
an ave rage observation period of 100 years, and that the 
num ber of avalanches behind each extreme a observation 
does not vary toa much. In this case the fitted regress ion line 
is a" 100 year" line predieting the lowest o: value during a 
100 year period. 

A nice feature of the Gumbel distribution is that once the 
regression line for a given period (e.g. 100 years) is established, 
the corresponding line for any other period can ·easily be 
found. By a change from a 100 year line to a 1000 year line, for 
example, the Gumbel distribution gives areeipe which quanti­
fies how much the regression line is to be lowered (section 4). 

2.3. Single-value Illodel 

If the observed o: value is due to only one single avalanche 
that has occurred in each path during the observation 
period, the assumed normal distribution is only one of 
severai candidates. In this case, the regression line is station­
ary, and the effect of an increased number of paths with o: 
observations is that the estimation of the unknown par-
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Fig. 2. Snow-slab avalanche difinitions, coordinate system 
and aetingforces. From Laekinger (1989). 

ame ters a, f3 and a is improved. The TV distribution (e.g. 
N(O, a)) is now the fundamental distribution used to find a 
criterion for hazard zones. 

As an example, ass urne that a safe a value for a specific 
path corresponds to the lower 10 percentile in the W distri­
bution. If a reflects the variation of possible a values for the 
specific path, this is equivalent to assuming that the actual a 
value belongs to the "10% most extreme potential ava­
lanches in the specific path". If, on the other hand, a reflects 
the variation among paths due to topographical or other 
reasons, this is then equivalent to assuming that the specific 
path belongs to the "worst 10% cases" (i.e. longest run-out) 
among paths with the same f3 va lue. For practical use, there 
is no difference between these two interpretations of a. 

3. PROBABILITY OF RELEASE 

3.1. Mechanical prababilistic madel 

General baekground 
Field observations and measurements show that the physical 
mechanism governing the release of a slab avalanche can 
vary greatly dep ending on the character of the deformation 
in the weak layer or interface beneath the slab where the slide 
initiates (McClung, 1987). The initiation of a slab avalanche is 
a multi-phase and progressive fraeture proeess. Referring to 
Figure 2, the following stages of a snow-slab avalanche frac­
ture are to be considered: 

Shear fracture along the shear interface, which is more­
or-less parallel to the surface. 

Tensile fraeture at the crown of the snow-slab avalanche. 

Flank fracture at the sides of the slab. 

Compressive fraeture at the stauchwall (lower limit of 
the release zone). 

A common practice is to investigate the slab stability 
solely with respect to shear fraeture in the shear interface, 
disregarding the boundary conditions along the cntirc 
snow-slab area, as well as the fracture's progressive charae­
ter. A strength-to-Ioad ratio (safety factor in the geotechni­
cal sense) is defined as the ratio of the shear strength along 
the potential failure plane and the driving shear stress par­
allel to the slope surface. The strength-to-Ioad method has 
often proved unsatisfactory. Therefore, in the mechanical 
model described below, the boundary conditions along the 
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entire snow-slab area are considered. Progressive fraeture as 
described by Salm (1986) is beyond the scope of this paper. 

The "standard"snow-slab avalanehe 
The following [orces act on the "standard avalanche" shown 
in Figure 2: T is the driving component of the total weight 
W of the release slab, FT is the tension force at the crown, 
Fe is the compression force at the stauchwall, FF is the flank 
force and Fs is the shear force along the shear surface. These 
forces can be estimated from the following equations: 

W = pgBLD + Wext , T = W sin 1/1, FT = BDat , 

Fe = BDae = 2BDc(1 + pgD/c), (2) 

FF = 2LDc, Fs = BLTs , 

where p is the density of the snow, g is the gravitational force 
per unit mass, B, L and D are the width, length and thick­
ness (perpendicular to the surface) of the slab, respectively, 
Wext is the externalload on the slab (e.g. skiers, snowmobile, 
etc.), 1/1 is the slope inclination, at is the tensile strength of the 
snow, ae = 2c(1 + pgD/c) is the compressive strength for 
the stauchwall, c is the shear strength of the snow slab, and 
Ts is the shear strength of the shear surface. The relationship 
between ae and c is obtained from the passive earth pressure 
theory for cohesive material. 

A safety factor may be defined as the ratio of the total 
resisting forces in the downslope direction to the driving 
shear force: 

(3) 

According to Perla (1980), the "standard avalanche" is 
characterized by the following values: p = 220 kg m -3, B = 
50 m, L = 50 m, D = 0.7 m and 1/1 = 38°. Lackinger (1989) 
perforrned a parametric study of the "standard" snow-slab 
avalanche using the ranges of strengths presented in Table L 

\Vith the minimum values of all strength parameters, 
the evaluated safety factor is only 0.72, whereas using the 
maximum values results in a safety factor of 6.09. The range 
of the safety factor clearly shows the practical problem one is 
faced with in a deterministic approach. \Vhen there is large 
uncertainty in the actual value of important parameters, a 
probabilistie approach capable of accounting for the uncer­
tainties is called for. A probabilistic model for "standard" 
snow-slab avalanche is described below. 

First-{)rder reliability method (FORM) approximation 
Equation (3) defined a safety factor SF with the property 
that SF < l implies a snow-slab avalanche release. Let 

g(X)=SF-l (4) 

define a so-called limit state function where now g < O is sy­
nonymous with a snow-slab avalanche. X here denotes a 
vector of stochastie basic variables (e.g. the variables intro­
duced in Equation (2) and Table 2). 

Tab/e 1. Ranges qf strengths for parametrie study qf the 
''standard''snow-slab avalanehe 

Parameter ,Hin. strength .\fax. strength 

kPa kPa 

3 15 
2.5 10 
0.5 5 



Harbitz and others: Probability anafysis in snow avalanclze hazard zoning 

Table 2. Probability distribution of basic ralldom variables in the standard avalanche model 

Random rariable 

Thickness (or height) ofslab, D (m) 
Slope angle, t/J (0) 
Cohesive strength ofsnow, c (kPa) 
Tensile strength ofsnow, Ut (kPa) 
Shear strcngth of sliding plane, Ts' (kPa) 
Width of slide, B (m) 
Lengthofslide, L (m) 
Densityofsnow, p (kgm-3

) 

Externalload, \Vext (kN) 

Distrihution 

Lognormal 
Lognormal 
Lognormal 
Lognormal 
Lognormal 
Lognormal 
Lognormal 

Normal 
Lognormal 

• Expected value = I kPa, coefIicient ofvariation = 30%. 

Let J(~) denote thejoint probability density function of 
X. The probability of an avalanche occurring is then 

Pi = in f(~) dx (5) 

i.e. the integral of f(~) over the domain fl in ~ space where 
9 < O. In order to illustrate these concepts, imagine a huge 
num ber of "critical" situations to be examined by avalanche 
experts in order to ass ess the probability of avalanche occur­
rence. Assurne that in each of these situations all the basic 
variables could be measured. These joint measurements 
could then be used to establish the unknown f(~). The inte­
gral above should then in principle give the same value as 
the proportion of the critical situations that caused an ava­
lanche to occur. 

In general, the Pi integral cannot be solved analytically, 
partly due to the generally complicated boundary between 
the safe and non-safe domain in ~ space. FORM is an ap­
proximate method to calculate Pi based on the following 
two steps: 

l. The vector of basic random variables X is transforrned 
into avector Z. of independent N(O, 1) variables by ap­
plying the Rosenblatt (1952) transformation. 

2. The transforrned limit state function 9(~(l;)) is linear­
ized at the point of maximum probability dens it y, i.e. 
the point on the failure boundary closest to the origin in 
;;. space, which is found by numerical searching algo­
rithms. 

The linearization point, ;;.*, is called the design point, 
and the distance from the origin to ;;.* is called the reliability 
index, d (rather than the normal designation f3 to avoid con­
fusion with the f3 angle above). It can be shown that the Pi 
value found by this hyperplane approximation to the gener­
ally curved failure boundary is 

Pi = <1>( -d) , (6) 

which increases with decreasing d. <1> is the cumulative 
standard N(O, 1) distribution function. The FORM approxi­
mation isjustified by the fact that the linear approximation is 
best where the probability density is largest. 

The directional cosines, /0 (rather than the normal desig­
nation o: to avoid confusion with the o: angle above), of the 
vector ;;.* are called the sensitivity factors, because they indi­
cate the relative influence of each basic variable on the reli­
ability index. Note that the sensitivity factors combine the 
sensitivity of the original deterministic limit state function 
with the variance of the variable. 

If some of the basic variables are correlated, the so-

,\fean Standard deviation Range considered by Lackinger (1989) 

0.7 O.l 0.4-1.5 
38 3 38 
6 1.5 2.5-10 
9 2.4- 3-15 

1.046 0.321 0.5-5 
50 25 IG-1I0 
50 25 IG-1I0 

220 20 220 
10 2 O 

called representative sensitivity factors, /f> are more appro­
priate than /0 as indicators of influence on Pi. These are 
defined as 

/ri = K<1>-l(F(xm, i = 1, ... , n, (7) 

where K is a normalizing constant so that L /;i = 1, <1>-1 is 
the inverse cumulative standard N(O, 1) distribution func­
tion, and F(Xi*) is the value of the cumulative distribution 
function of Xi at the design point, ;;.*. For uncorrelated vari­
ables /0 = /r-

A1ante Carlo simulatian 
The FORM approach described above relies heavily on the 
ability to find the design point, ;;.*, accurately, as well as on 
the assumption of areasonable hyperplane approximation 
to the true failure boundary. In worst case with a very curved 
boundary at the design point, P i can be wrongly estimated by 
several orders of magnitude. 

Monte Carlo simulation is a supplementary and very 
useful tool for estimating the unknown Pi value, as well as 
examining if the design point found by FORM is reason­
able. The simplest approach is to generate n random 
N(O, 1) variables, Zl, ... , Zn, one for each stochastie vari­
able, Xi, in the mechanical model, then calculate the corres­
ponding variable values for Xi (by applying the inverse 
Rosenblatt transformation) and the corresponding safety 
factor SF and g(X) = SF - 1. 1fthis procedure is repeated 
N sim times, say, and N _ of these simulations give negative 
g(X) (i.e. an avalanche release), an unbiased Pi estimator 
p~m is given as: 

sim N_ 
Pi =--. 

N sim 
(8) 

Further, N_ is binomially distributed Bino(Nsim,Pi), so 
that N _ = 100 is sufficient in most cases to obtain a relative 
accuracy of about 10%. This corresponds to a required 
number of N sim = 100/ Pi simulations. 

Monte Carlo simulation can als o be applied to examine 
the accuracy of the reliability index, d, and the design point, 
;;.*, found by FORM, for example by restrieting the 
sampling domain to an n-dimensional small hypersphere 
with origin at ;;.*, 

dsim = ~~~(IZ.ll, ... , IZ.N"J), (9) 

and with ~im equal to the;;. corresponding to dsim. 

If the simulations provide results similar to those of the 
FORM analysis, this is a good quality support to the latter. 
If not, one should be extra-careful in the interpretations of 
the FORM results. When the Piresults deviate substantially 
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D(-) Wext (-) p (_) 

Fig. 1 Representative sensitivityfactors lr with sign indicating 
direction of influence on d. 

(e.g. by ane order of magnitude), the simulated PI value 
should be preferred. 

In cases where PI is sa small that the numerical effort by 
the described method becomes prohibitive, there are other 
efficient techniques available for obtaining reliable PI esti­
mates. Trusting that a proper design point is found (by 
FORM), the sampling dama in can be restricted to the non­
safe area outside the n-dimensional hypersphere in Z. space 
with centre in the origin (Harbitz, 1986). By applying an ap­
propriate variable transformation of ff it can be shown that 
the required number of simulations is reduced by a factor 
ane to the probability mass outside the d sphere, the latter 
probability found from the chi-square distribution with n 
degrees offreedom (Harbitz, 1986). 

Calculation example 
The "standard" slab avalanche is used. Nine basic variables 
are defined with the probability distributions given inTable 
2. The mean values and standard deviations are chosen such 
that most of the variables span a range in agreement with 
the values present ed in Table 1. 

A correlation coefficient Pc (In c, In (Tt) = 0.8 is assumed 
between In c and In (Tt (cohesive and tensile strengths). 
According to McClung (1987), there is ascale effect on the 
average shear resistance of the weakness plane such that 
larger areas tend to have a Iower shear resistance. In order 
to model this, the negative correlation coefficients 
Pc (In Ts In B) = -0.5 and Pc (In Ts In L) = -0.5 are used. 

FORM results: 
Using the FORM method gives the reliability index d = 
1.5302 and the probability of an avalanche occurring 
PI = q,(d) = 0.0630. Representative sensitivity factors, lr, 
are illustrated in Figure 3, demonstrating that shear resis­
tance and snow-slab dimensions (length and width) domi­
nate the influence on PI. If the correlations between shear 
resistance and the snow-slab dimensions are removed, the 
d value is increased from 1.53 to 1.98, corresponding to a 
decrease of PI from 0.063 to 0.024. 

Monte Carlo simulation results: 
PI = 5109/100000 = 0.051 (100 000 z simulations). 
dsim = 1.5303 based on 100000 z simulations in sphere 
around design point with radius O.l. 
The simulated design point based on dsim deviates negligibly 
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from that found by the FORM approximation. The simula­
tions give a st rong indication that the reliability index and 
the design point found by FORM is accurate. The PI value 
0.051 bas ed on simulations is more reliable than the value 
0.063 found by FORM due to the large number of simula­
tions (standard deviation of PI equal to 0.0007). However, 
the twa PI values are pre tty dose, indicating that the linear 
approximation us ed by FORM is reasonable in this case. 

First-order reliability analyses along with higher-order 
approximations and simulations are presented by Nadim 
(1999). 

3.2. Madel based on abserved avalanches 

It is very difficult to quantify the annual probability of snow 
avalanche occurrence on the basis of mechanical modeis. In 
some areas where general dimatic conditions and topog­
raphy are favourable for avalanche activity, local wind con­
ditions may prevent the accumulation of snow and an 
avalanche would rarely occur. As an alternative, two funda­
mentally different statistical approaches are presented below. 

Now PI is defined as the probability of an extreme ava­
lanche occurring in a specific path during one year, which is 
assumed to be small (PI <'" 0.1). It is assumed that the prob­
ability of more than ane (extrerne) avalanche in one year is 
negligible, and that the probability in a future year is inde­
pendent of avalanche activity in previous years. The number, 
r, of avalanches occurring during a period of n years, condi­
tional on P!> is then binomially distributed, Bino (n, PI): 

The return period, .6.tr ~ l/p!> is the mean time period 
between successive avalanches. Let .6.Tr denote a random 
period between twa successive avalanches. It can be shown 
that given the assumptions above, .6.Tr is approximately ex­
ponentially distributed with mean .6.tr : 

Correspondingly, the number of avalanches, Nav, occur-

10,------,,------,------,------,------, 

8;r----~r_----_r------r_----_+----__4 

avalanche bserved in years 

6;-+---~r_----_r------r_----_+----__4 

4~~r_~r_----_r------r_----_+----__4 

o 0.2 0.4 0.6 0.8 
P, 

Fig. 4. Probability distributionfar annual avalanche occur­
rence after o, 1, 3 and 8 J'ears of observation of no avalanche. 



ring during any time period, Åt, is approximately Poisson­
distributed with mean m = Åt/ Åtr : 

mNav. c-m 

J(Nav ) ~ Nav! ' Nav ~ O. (12) 

The general problem considered is that p! (and corres­
pondingly, Åtr) is not known and must be estimated. Two dif­
ferent approaehes to this estimation problem are treated 
below: the classical approach, where p! is considered a eon­
stant and the observation r is the only stochastic variable, and 
the Bayesian approach, where p! and rare both stochastic. 

The classical approach 
\Vithin a classical statistical framework p! is considered a 
constant, and the term probability has a strict frequentistic 
interpretation. This is equivalent to saying that PI = ~r:'.oor/n. 
In practice, n is limited, and the maximum likelihood esti­
mator pi = r/n is an estimator for P! whieh becomes better 
with increasing r. If, for example, r = l, i.e. one avalanche 
has occurred during an observation period of n = 200 years, 
the estimate pi = 1/200 is quite uncertain. 

Assurne now that r = O and n = 200, i.e. no avalanehes 
occurred in an interval of 200 years. In this case the point 
estimate pi = 0/200 = O is useless. Try, however, to find a 
conservative upper value, Up ,0.95, for P! where "95% cer­
tain" is not exceeded, based on the observation r obs = O. A 
dassical approach to do this is to construct a 95% confi­
dence interval, [O, Up ,0.95], for p!. The up per intervallimit 
U = Up, 0.95 is then found from the cumulative binomial dis­
tribution function as follows: 

per ~ robs=olp! = U) = 0.05 
Tohs=O 

=> L C;OO) U'" (1 - U)200-r = (1- U)200 (13) 
r=O 

=> Up ,0.95 = 1 - 0.051
/
200 = 1.49%. 

It can then be stated with "95% certainty" that p! is not 
larger than 1.49% (more strictly, the observed result or less 
conservative results (smaller r when robs > O) would have 
occurred at most l in 20 (5%) times ifP! was really larger 
or equal to Up ,0.95). This concept can be extended to a gen­
eral certainty level, 100(I-c)%, and a general value for n 
and robs by replacing 200 with n, robs with any value 
between O and n,0.05 with c, and 0.95 with l - c. In this gen­
eral case, however, Up,l-c is not given as a simple explicit 
expression and must be found numerically, based on the 
cumulative Bino(n,p) distribution with P as the unknown. 

The advantage of the classical approach is that values 
for p! with specific "certainty" levels, where the term cer­
tainty and probability are defined in a strict, scientific man­
ner, can be construeted. The disadvantage is the quite rigid 
concept of "an imagined infinite number of observation 
periods under identical conditions" needed to justify our 
assumptions when only a few observations are available. 
Another disadvantage is that when considering a speeific 
path with only a few or no observed avalanches, it is difIieult 
to take a priori knowledge into account (e.g. observations 
from other and similar paths). Here the Bayesian approach 
serves as a formal alternative where, for example, expert 
judgement can more easily be taken into account. 

The Bayesian approach 
Contra ry to the classical approach, the parameter p! is trea­
ted as a stochastic variable with an a priori probability den­
sit y function, 7f(P!), called the prior. The prior can be based 
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on subjective knowledge, historical observations or both. 
The term prior reflects that it is established before (new) 
observations are made. Once new observations are avail­
able, the so-called posterior probability density funetion, 
J(p!lr), for p! conditional on r can be found. The posterior, 
J(p!lr), is proportional to 7f(P!) and the likelihood J(rlp!), 
the latter now considered as a function ofP!. All estimation 
ofP! is based on the posterior. Based on a squared error loss 
function (Berger, 1980), the Bayes-estimator, pi, for p f, 
equals the mean in the posterior, J(p!lr). 

The Bayesian approach is particularly useful if a good a 
priori knowledge exists (e.g. observations from similar 
paths) but poor observations from the actual path (e.g. r = 
O). It can also be implemented, however, ifno a priori know­
ledge is available, by applying so-called non-informative, or 
"vague", priors. 

Technically, the Bayes approach is particularly conveni­
ent if the prior and the posterior belong to the same class of 
distributions. In our case, the beta distribution beta(a, b), 
with mean a/Ca + b), is such a conjugate dass ofpriors, i.e. 

7f(P!)rxIj-I(I-pd-l , O<p!<I; a~O, b~O. 

(14) 

The dass ofbeta distributions is quite rieh, induding the 
vague prior 7f0 (P!) = 1 (a = b = 1), as well as conservative 
(a = l, b < l) and non-conservative (a < l, b = l) alte rna­
tives. A particular choice of a vague prior, theJeffrey's prior 
7rJ, is obtained with a = b = 1/2, which is invariant with 
respect to transformations of p! (Carlin and Louis, 1996). 
If, for example, p' = ln(p!) is considered, the probability 
density function of p' will be identical to 7rJ if 7f(P!) = 7fJ. 

Note that 7fJ re turns considerably less conservative esti­
mates of p! than 7r0, despite the fact that they are both con­
structed to be vague. For large values of n, the difference 
between the conservative alternative and 7r0 is negligible. 

The empirical Bayes approach is an iterative process 
where the posterior from the last observation is us ed as a 
prior before a new observation. As an illustrative example, 
let the prior 7f(P!) = l be applied before the first year of 
observations, which will give one or zero avalanches. The pos­
terior, Jn(p!lr), after n years of observations with totally r 
avalanches observed, is then 

Jn(p!lr) = beta(r + 1, n + 1) (15) 

with Bayes estimate 

pj = (r + I)/(r + n + 2). (16) 

As an example, r = O and n = 200 gives the estimator 
pi = 1/202. Some examples of the updating procedure are 
shown in Figure 4. 

Analogous to dassical confidence intervals, a 100 (l - c) % 
credibility interval for PI, [O, Up, l-c], can be constructed. In 
this case Up, l-c is identical to the upper c fractile in the pos­
terior, which formally is found by solving the equation 

pep! > Up,l-cl r ) = c 

{:} pep! < Up,l-cl r ) = 1 - c (17) 

=> Up, l-c =B-1(I-c; r+I, n+r+l), 

where B- I denotes the inverse cumulative beta distribu­
tion with argument l - c and parameters a = r + 1 and 
b=n+r+1. 

Contra ry to the classical approach, it is now meaningful 
to say that the probability of the true p! value being located in 
the actual interval is 100 (1 - c) %, but the probability term 
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Fig. 5. Comparisan between classical (solid lines) and Bayesian 
( dashed lines) approach concerning the certainty leveli - c qf 
PI estimates for increasing number qf avalanches from left 
(r = O) to right (r = 5) when the observation period is 
n = 200 )'ears. 

now does not have a frequentative interpretation due to the 
vague subjective probability concept involved in the prior. 

If again the case r = O, n = 200 and c = O.OS is consid­
ered, the cumulative posterior is 

BpJlr(u) = 1- (1- U)201 . (18) 

Based on Equation (17) it is therefore found that 

1 - (1 - u)201 = 1 - 0.05 

::::} u = Up,0.95 = 1 - 0.051
/
201 = 1.48%, 

(19) 

which is very dose to the value found by the dassical 
approach. In Figure S the two approaehes are shown for dif­
ferent values of c and r. The correspondence between the two 
approaehes decreases with increasing r, with the Bayesian 
approach giving the least conservative alternative. By apply­
ing ]effrey's prior, even less conservative estimates would 
have been obtained. In theJeffrey case Up,0.95 = 0.9S%, i.e. 
considerably less than the estimate of 1.48% based on the flat 
prior. This illustrates that one should generally be careful in 
applying a Bayesian approach, and in particular assess the 
sensitivity of the choice of the prior. 

4. APPLICATIONS IN HAZARD ZONING 

4.1. Introductory remarks 

As an example application, a "safe" run-out angle, as, is now 
calculated based on the criterion that the annual probability 
of being hit by an avalanche do es not exceed Ps = Il tlts, 
where tlts is the "safe" period. As an example, tlts = 
1000 years and Ps = I/lODD if a "1000 year" avalanche is the 
safety criterion. A major problem is the generally poor know­
ledge of the return period, tltr , or correspondingly, the 
annual probability of avalanche release, PI = Il tltr • The 
certainty level assigned to the as value is therefore strongly 
related to the certainty level selected for the PI estimate. The 
dassical approach of a confidenee interval described in sec­
tion 3.2 is still applied, which gave results similar to or more 
conservative than the Bayesian approach with a flat prior. 
Example calculations for a Bayesian approach are presented 
by Nadim (1999) and adapted to this paper by Harbitz and 
others (2001). 
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Further, the extreme-value model and the single-value 
model are considered in two fundamentally different ways 
to interpret the al/3 mode!. It will be outlined how as is cal­
culated bas ed on each ofthese approaehes, and a compari­
son will be made between them . 

An important parameter involved in both approaches is 
ms = tltsl tltr , i.e. the ratio between the safe period and the 
return period. Furthermore, the return period can be pre­
sented as a product tltr = tltANA, where tltA is the aver­
age return period between weather situations with acute 
avalanche danger and N A is the average number of such 
acute situations between each avalanche realization. 

4.2. Application of the extreme-value model 

It is now assumed that the reported a angle in each ava­
lanche path is the most extreme after N avalanches, and that 
N is large enough for the a angle to follow a known extreme 
value distribution (Gumbel). It is further assumed that both 
N and the observation (return) period do not vary substan­
tially between the paths on which the al/3 regress ion line is 
based. Exceptions from these assumptions may explain "out­
liers" in the regression analysis. 

Under the assumptions above, the al/3 mode! is 

a(ms) = 0.96/3 - 1.4° + b(ms) + TV, (20) 

where TV is Gumbel-distributed with zero mean and stan­
dard deviation a = 2.3°. Based on the properties of the 
Gumbel distribution, the dynamics of the regression line is 
now reflected through the parameter b( ms): 

b(ms) = _61/ 2 .2.3° ·ln(ms)/7r. (21) 

As an example, ass urne tltr = 200 years and tlts = 1000 years, 
i.e. ms = 1000/200 = S. In this case b(ms) = -2.9°, and a(S) = 
0.96/3 - 4.3° is a possible estimate for a "safe area". This estimate 
corresponds to the mean lODD year avalanche, i.e. the mean of 
a huge number of imagined most extreme avalanches during 
many 1000 year periods. Other candidates are the modal 
value, analogous to how the" IDO year sea wave" is defined, 
and the median. Due to the skew property of the Gumbel dis­
tribution, the mean value is the most conservative choice, and 
the modal value is the least conservative. 

Let tlas(ms) denote how much as is below the original 
al/3 regression line 0.96/3-1.4°. The three mentioned alter­
natives then provide 

tlas,mean = 61
/
2 .2.3° ·ln(ms)/7r 

tlas,median = tlas,mean - 0.29 . 2.3° (22) 

tlas,mode = tlas,mean - 0.45 . 2.3° . 

The mean is about l ° more conservative than the mode. The 
three tlas functions are shown as a function of ms in Figure 6. 

Note that the three expressions and the differences 
between them strongly rely on the assumption that a is the 
standard deviation in the Gumbel distribution. If there are 
substantial differences in the number of avalanches behind 
the different a observations, but the Gumbel approach is 
still appropriate, the estimated a value also includes the N 
variation among paths. In this case the standard deviation 
in the Gumbe! distribution is smaller than a, and the ex­
pressions above are too conservative. 

4.3 Application of the single-value model 

The al/3 regression line is now 

a = 0.96/3 - 1.4° + W, (23) 
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where W rv N(O, 2.3°). As explained in section l, the "safe" 
value, as, is now found by use of the product of run-out ex­
ceedance probability times the annual probability of ava­
lanche releiJse, i.e. 

Ps = P(a < as)PI 

Ps 1 

PI ms 

= 2.3<1>-1 C~ l) , 
(24) 

based on the properties of the normal distribution. ~as as a 
function of ms is shown in Figure 6. As shown, it is very dose 
to the corresponding extreme-value expression based on the 
mode in the Gumbel distribution. 

If now the situation is the opposite (i.e. as = 20.3° repre­
sents a prescribed point ofinterest, e.g. a house or a road), the 
unknown Ps can be found as follows: Consider an avalanche 
path profile with {3 = 25°. The prescribed point of interest 
along the path will be hit if a < 20.3°. From Equation (l), the 
expected value of a is 22.6°. The probability that an extreme 
avalanche will reach the prescribed point is then Ps = P 
(a < 20.3°)PI = <1>[(20.3°- 22_6°)/2.3°]p 1= 2.3°]PI = <1> (-l.O)PI 
=~ O.16PI· 

4.4. Confidenee intervals for hazard zones 

It has been shown how a "safe" value as can be calculated 
when ms is known. An assigned specified certainty level to 
as can be found by constructing confidenee intervals [O, UmJ 
for ms based on a corresponding interval [O, Up] for PI as 
described in section 3.2. This is due to the monotonic relation­
ship ms = ~ts/ Åtr = ~tsPf' When Up is found, Um, is sim­
ply found by the relation Um, = ÅtsUp. This is illustrated 
with the example that r = O, i.e. no avalanches are observed 
during an n = 200 years period. In section 3.2 it was found 
that Up ,0.95 = 1.49%. With Åts = 1000 years, Um,,0.95 = 
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1000 X 0.0149 = 14.9. Using this value in the various Åas 

expressions (Equations (22) and (24)) gives: 

~as,mean = 4.8°(extreme-value model) 

Åas.mcdian = 4.2° (extreme-value model) 

~as,mode = 3.8° (extreme-value model) 

~as, = 3.4° (single-value model) . 

(25) 

Thus, all values above are assigned a "95% certainty 
level", which could be changed to any other levellOO (l - c) % 
by replaeing 0.95 with l-c. 

Technically the procedure above can also be performed 
based on subjectivejudgements for a path with no avalanche 
observations. If, for example, avalanche experts are confi­
dent that the path is similar to other paths for which obser­
vations rand n exist, the latter can be us ed to estimate ~tr, 
and eorrespondingly ms = ~ts/ ~tr. In this case a reason­
able approach is to apply the binomial distribution with 
parameters ~r and ~n, i.e. the accumulated values from 
the similar paths. 

5. CONCLUSION 

A mechanical probabilistic model for avalanche release is 
applied in combination with a statistical/topographical 
model for avalanche run-out distance to obtain the uncondi­
tional probability of extreme run-out distance. 

For the mechanical model, FORM and Monte Carlo 
simulations for calculating the annual probability of ava­
lanche relea se are compared. The simulations give astrong 
indication that the FORM approximation is reasonable. 
The example application demonstrates that FORM is a 
powerful tool for performing systematie parametric studies. 
It provides a rational framework for decision-making when 
there is a large uncertainty in the input parameters, and it 
identifies the relative contribution of the input variables to 
the overall uncertainty. This information helps the engineer 
to foeus on reducing the uncertainty in a few important 
parameters in order to achieve a significant reduction in 
the overall uncertainty. 

The interpretation of the statistical/topographical model 
as an extreme-value model or as a single-value model is dis­
eussed. The ambiguous interpretation of the model reflects 
the need for more than one observation in a sufficient number 
of paths. It is outlined how a "safe" run-out angle is calculated 
based on each of the two approaehes, and how a specified cer­
tainty level can be found by constructing confidenee intervals 
based on the annual probability of avalanche release. 

Comparisons of a dassical approach where the probabil­
it y of an avalanche occurring is a strict frequentistic constant, 
and a Bayesian approach with stochastie probability and a 
vague prior reveal that the correspondence between the two 
approaehes decreases with an increasing number of obser­
vations, the Bayesian approach being the less conservative. 

Finally, example applications in hazard zoning are pre­
sented, with emphasis on how the influence of historie al 
observations, local dimate, etc., on run-out distance can be 
quantified in statistical terms and how a specified certainty 
levd can be found by constructing confidenee intervals for, 
for example, the most likely largest run-out distance during 
various time intervals. Owing to the quantified uncertainty 
in the probability of extreme run-out distance, it is suggested 
that the areas suseeptible to avalanches be indicated by 
zones rather than demarcation lines only. 
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It is recommended that further work on probabilistic 
analysis in snow-avalanche hazard zoning should: 

L implement probabilistie stability analysis for mo dels 
that aecount for the way snow shear strength depends 
on the rate of deformatian, as well as for progressive 
shear failure due to laeal stress concentration and frac­
ture propagatian on the weakness plane (unzipping 
mode offailure); 

2. provide severai avalanehe observations in each path in 
order to obtain a proper interpretation of the al f3 model 
and the residu al distribution involved, thus providing a 
more reliable hazard zoning; 

3. establish uncertainty measures for the "safe" run-out 
angle by construeting confidence intervals for this par­
ameter with different confidence levels, where all statis­
tical uncertainties are taken into accaunt, including the 
uncertainty of the regress ion line itself; 

4. validate the al f3 madel statistically and examine the 
sensitivity on the "safe" run-out angle measures for dif­
ferent choices of residual distributions. 
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