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On probability analysis in snow avalanche hazard zoning
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ABSTRACT. The reduced societal acceptance of living in regions exposed to snow ava-
lanches, and the increased economic consequences when houses are located within a hazard
zone, highlight the uncertainty concerning avalanche run-out prediction. The limitations of
today’s zoning procedures are especially pronounced in potential avalanche terrain where
there are few observations of snow avalanches, where old buildings are present in the potential
run-out zone, and where the local climate does not favour severe snow accumulation. This
paper combines a mechanical probabilistic model for avalanche release with a statistical/
topographical model for avalanche run-out distance to obtain the unconditional probability
of extreme run-out distance. For the mechanical model, a first-order reliability method
(FORM) and Monte Carlo simulations are compared. The interpretation of the statistical/
topographical model either as an extreme value model or as a single value model is discussed.
Furthermore, both a classical approach where the probability of an avalanche occurring is a
constant, and a Bayesian approach with stochastic probability, are compared. Finally,
example applications in hazard zoning are presented, with emphasis on how the influence of
historical observations, local climate, etc., on run-out distance can be quantified in statistical
terms and how a specified certainty level can be found from constructing confidence intervals

for, for example, the most likely largest run-out distance during various time intervals.

1. INTRODUCTION

Increased human activity in mountain regions, deforestation
from pollution, forestry and increased number of ski resorts, as
well as a generally reduced societal acceptance of risk, have
caused a growing demand for hazard zoning and avalanche
protective measures. Enjoined building regulations and the in-
creased economic consequences of hazard zoning further imply
an increasing demand for risk quantification including quanti-
fication of the uncertainty of the estimates. This is a great chal-
lenge, especially in potential avalanche terrain where there are
few observations of snow avalanches, where old buildings are
present in the potential run-out zone, and where the local
climate does not favour severe snow accumulation.

According to the Norwegian building regulations, the
“safe” areas in the snow-avalanche-prone regions of Norway
are those areas where the nominal annual probability of a house
being hit by an avalanche is <107, The term “nominal” implies
that the probability cannot be exactly quantified and reflects
the uncertainty of the estimates. Alternatively, safety can be
linked to impact pressure (Salm and others, 1990; McClung
and Schaerer, 1993) and to vulnerability and survival prob-
ability (Keylock and others, 1999; Jénasson and others, 2000;
Keylock and Barbolini, in press).

In practice, the avalanche expert estimates contour lines of
specific annual probabilities, based on the local climatic con-
ditions, topography and knowledge of the average frequency of
avalanche occurrence, in combination with statistical and/or
dynamics models for prediction of run-out distance, velocity
and impact pressure.

Various statistical models for run-out distance calcula-
tions based on the terrain profile have been presented (Lied
and Bakkehei, 1980; Bakkehoi and others, 1983; McClung and
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Lied, 1987; McClung and Mears, 1991). Keylock and others
(1999) also take into account the interaction of variable ava-
lanche width and differences in avalanche trajectory. Section
2 presents the statistical/topographical &/ model (Lied and
Bakkehei, 1980; Bakkehoi and others, 1983) applied in this paper
for run-out distance calculations. Such models return a condi-
tional probability distribution of extreme run-out distance,
given that a major avalanche occurs. To obtain the uncondi-
tional annual probability distribution, one needs also to esti-
mate the annual probability of release of an avalanche. Hence,
the “actual” annual probability is the run-out exceedance prob-
ability computed from statistical/topographical models times
the annual probability of avalanche release in a given area.

Mechanical models for avalanche release based on a
strength-to-load ratio have been presented by, for example,
Perla (1975), Sommerfeld (1980), Fshn (1987), McClung (1987)
and McClung and Schweizer (1999). In section 3.1, models
based on the mechanics of slab avalanches and structural
reliability methods or Monte Carlo simulations are applied
as a basis for calculating the annual probability of avalanche
release. A probabilistic approach was presented by Conway
and Abrahamson (1988). In section 3.2 an alternative statis-
tical model based on observations is presented.

Section 4 explains how statistical/topographical run-out
models can be combined with release probability models in
hazard zoning. Alternatively, the run-out distance may be cal-
culated by integrating statistical and dynamics models (Bar-
bolini and others, 2000), or combining simple and more
advanced models (Harbitz and others, 1998), and hence redu-
cing the subset of permissible parameter values to a tolerable
level. Barbolini (1999) evaluates the uncertainty of model
results further, and discusses probability distribution functions
for the input parameters of the release and dynamics models.
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Fig. 1. Topographic parameters describing terrain profile.

Some recommendations for future hazard zoning proce-
dures are included in the conclusions.

2. EXTREME RUN-OUT DISTANCE PREDICTION

2.1. Statistical/topographical model

The statistical &/ model (Lied and Bakkehoi, 1980; Bakkehei
and others, 1983) predicts the extreme run-out distance for a
snow avalanche solely as a function of topography. The run-
out distance equations are found by regression analysis, corre-
lating the longest registered run-out distance from 206
Norwegian avalanche paths to a selection of topographic
parameters. The parameters that have proved to be most sig-
nificant are presented in Figure 1.

The average inclination of the avalanche path between
the starting point and the point of 10° inclination along the
path profile, 3, is empirically found to be the best character-
ization of the track inclination. The regression analysis
revealed that the 3 angle is also the most important topo-
graphic parameter. In fact, it appears that, in general, 3 is
the only statistically significant terrain parameter. A 3 point
is accepted only if it is inside the section of the profile where
the angle between the tangent of the best-fit parabola at the
[ point and the horizontal plane is 5-15°. The model is most
appropriate for analysis along longitudinally concave
profiles. The run-out distance is represented by the average
inclination of the total avalanche path, a.

The calculated run-out distances are those that might be
expected under snow conditions favouring the longest run-out
distances. The assumption of small variations in the physical
snow parameters giving the longest run-out distance is only
valid within one climatic region.

The usual form of the &/ 3 model for a random o value is
a =afl+ b+ W, where a and b are regression parameters
and W is a normal N(0, o) variable. Based on 206 (o, )
observations, the estimated values for the unknown par-
ameters are a¢* = 096, b* = —1.4° and standard deviation
o* = 2.3° (where * is used as a general superscript for an
estimator), i.e.

a=0968-14°+W, W~ N(0,23°). (1)

The empirical correlation coefficient between the
observed o and 3 values is 0.92. No apparent deviation from
the standard assumptions of independent residuals with con-
stant variance independent of 3 is seen from residual plots
(the residuals are the difference between observed o values
and the a value from the fitted regression line at the 8 values
corresponding to the a observations). However, the fre-
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quency histogram of the residuals indicates a skew distribu-
tion with the heaviest tail towards small « values. This raises
the question whether the assumption of a normal residual
distribution is correct. Regardless of residual distribution,
the angle 8 must be within the range where the model is rea-
sonable. In addition, the number of observations is assumed
to be large enough for the uncertainty of the regression line
itself and the uncertainty of the standard deviation of W, o,
to be negligible.

The appropriate interpretation of the o/ model with
respect to hazard zoning is not obvious. This is partly due to
the fact that mostly there is only one a observation recorded
for each path, and partly due to the scarcity of knowledge
about the actual observation period and the number of ava-
lanches that have occurred. It is therefore difficult to know if,
for example, o reflects the variation of possible a values for
each specific path, or if o reflects the variation among paths
due to topographical or other reasons. These two alternatives
are further discussed in sections 2.2 and 2.3.

Based on an analysis of 45 Icelandic events, Jéhannesson
(1998) found that the intercept term is statistically insignifi-
cant, and that the equation without intercept for a modified
and trimmed dataset of 192 Norwegian events reads
a = 0.938 with standard deviation of 2.1°. Even though
the latter equation is mathematically simpler, it was decided
to apply the more general and well-known Equation (1) in
this context. A more complete description of the /3 model
1s presented by Harbitz (1998).

2.2. Extreme-value model

If the observed o value is the most extreme run-out angle for
N avalanches, oy, ..., ay, that have occurred in one single
path, then the assumption of a normal W distribution is
not realistic. In this case the Gumbel distribution is an
actual extreme-value distribution for W for sufficiently
large N. Let f denote the distribution of the individual o
values oy, ..., ay. The Gumbel distribution is the appropri-
ate asymptotic extreme value distribution for a range of dif-
ferent f, among them the normal distribution (Galambos,
1978). A consequence of such an extreme-value interpret-
ation is that the regression line is dependent on N, which
increases with observation period and conditions favouring
avalanches.

Assume that the actual (a, 8) observations are based on
an average observation period of 100 years, and that the
number of avalanches behind each extreme a observation
does not vary too much. In this case the fitted regression line
is a “100 year” line predicting the lowest a value during a
100 year period. ‘

A nice feature of the Gumbel distribution is that once the
regression line for a given period (e.g. 100 years) is established,
the corresponding line for any other period can easily be
found. By a change from a 100 year line to a 1000 year line, for
example, the Gumbel distribution gives a recipe which quanti-
fies how much the regression line is to be lowered (section 4).

2.3. Single-value model

If the observed a value is due to only one single avalanche
that has occurred in each path during the observation
period, the assumed normal distribution is only one of
several candidates. In this case, the regression line is station-
ary, and the effect of an increased number of paths with o
observations is that the estimation of the unknown par-
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Fig. 2. Snow-slab avalanche definitions, coordinate system
and acting forces. From Lackinger (1989).

ameters ¢, 8 and o is improved. The W distribution (e.g.
N(0, 0)) is now the fundamental distribution used to find a
criterion for hazard zones.

As an example, assume that a safe a value for a specific
path corresponds to the lower 10 percentile in the W distri-
bution. If o reflects the variation of possible a values for the
specific path, thisis equivalent to assuming that the actual o
value belongs to the “10% most extreme potential ava-
lanches in the specific path” If, on the other hand, o reflects
the variation among paths due to topographical or other
reasons, this is then equivalent to assuming that the specific
path belongs to the “worst 10% cases” (i.e. longest run-out)
among paths with the same [ value. For practical use, there
is no difference between these two interpretations of o.

3. PROBABILITY OF RELEASE

3.1. Mechanical probabilistic model

General background

Field observations and measurements show that the physical
mechanism governing the release of a slab avalanche can
vary greatly depending on the character of the deformation
in the weak layer or interface beneath the slab where the slide
initiates (McClung, 1987). The initiation of a slab avalanche is
a multi-phase and progressive fracture process. Referring to
Figure 2, the following stages of a snow-slab avalanche frac-
ture are to be considered:

Shear fracture along the shear interface, which is more-
or-less parallel to the surface.

Tensile fracture at the crown of the snow-slab avalanche,
Flank fracture at the sides of the slab.

Compressive fracture at the stauchwall (lower limit of
the release zone).

A common practice is to investigate the slab stability
solely with respect to shear fracture in the shear interface,
disrcgarding the boundary conditions along the cntire
snow-slab area, as well as the fracture’s progressive charac-
ter. A strength-to-load ratio (safety factor in the geotechni-
cal sense) is defined as the ratio of the shear strength along
the potential failure plane and the driving shear stress par-
allel to the slope surface. The strength-to-load method has
often proved unsatisfactory. Therefore, in the mechanical
model described below, the boundary conditions along the
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entire snow-slab area are considered. Progressive fracture as

described by Salm (1986) is beyond the scope of this paper.

The “standard” snow-slab avalanche

The following forces act on the “standard avalanche” shown
in Figure 2: T is the driving component of the total weight
W of the release slab, Fr is the tension force at the crown,
F( is the compression force at the stauchwall, Ff is the flank
force and Fg is the shear force along the shear surface. These
forces can be estimated from the following equations:

W = pgBLD + Wy, T = Wsinvy, Fr = BDoy,
Fc = BDo. =2BDc(1 + pgD/¢), (2)
Fr =2LDc, F5 = BLty,

where p s the density of the snow, g is the gravitational force
per unit mass, B, L and D are the width, length and thick-
ness (perpendicular to the surface) of the slab, respectively,
Woext is the external load on the slab (e.g. skiers, snowmobile,
etc), 1 is the slope inclination, oy is the tensile strength of the
snow, g == 2¢(1+ pgD/c) is the compressive strength for
the stauchwall, ¢ is the shear strength of the snow slab, and
Ty is the shear strength of the shear surface. The relationship
between o, and cis obtained from the passive earth pressure
theory for cohesive material.

A safety factor may be defined as the ratio of the total
resisting forces in the downslope direction to the driving
shear force:

Sr = (Fs + Fr + Fc + Fy)/T. 3)

According to Perla (1980), the “standard avalanche” is
characterized by the following values: p =220kgm >, B =
50m, L =50m, D =0.7m and ¢ = 38°. Lackinger (1989)
performed a parametric study of the “standard” snow-slab
avalanche using the ranges of strengths presented inTable 1.

With the minimum values of all strength parameters,
the evaluated safety factor is only 0.72, whereas using the
maximum values results in a safety factor of 6.09. The range
of the safety factor clearly shows the practical problem one is
faced with in a deterministic approach. When there is large
uncertainty in the actual value of important parameters, a
probabilistic approach capable of accounting for the uncer-
tainties is called for. A probabilistic model for “standard”
snow-slab avalanche is described below.

First-order reliability method ( FORM) approximation
Equation (3) defined a safety factor Sp with the property
that Sp < 1implies a snow-slab avalanche release. Let

9(X)=Sr—1 (4)
define a so-called limit state function where now g < O is sy-
nonymous with a snow-slab avalanche. X here denotes a

vector of stochastic basic variables (e.g. the variables intro-

duced in Equation (2) and Table 2).

Table 1. Ranges of strengths for parametric study of the
“standard” snow-slab avalanche

Parameter Min. strength Max. strength
kPa kPa
oy 3 15
C 25 10
Ts 0.5 5
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Table 2. Probability distribution of basic random variables in the standard avalanche model

Random variable Distribution Mean Standard deviation Range considered by Lackinger (1989)
Thickness (or height) of slab, D {m) Lognormal 07 0.1 04-15

Slope angle, ¥ (°) Lognormal 38 3 38

Cohesive strength of snow, ¢ (kPa) Lognormal 6 L5 25-10

Tensile strength of snow, oy (kPa) Lognormal 9 24 3-15

Shear strength of sliding plane, 7s* (kPa) Lognormal 1.046 0321 0.5-5

Width of slide, B (m) Lognormal 50 25 10-110

Length of slide, L (m) Lognormal 50 25 10-110

Density of snow, p (kg m %) Normal 220 20 220

External load, Wex, (kN) Lognormal 10 2 0

* Expected value = 1kPa, coefficient of variation = 30%.

Let f(z) denote the joint probability density function of
X. The probability of an avalanche occurring is then

2y = /Q f(z) dz (5)

i.e. the integral of f(z) over the domain 2 in z space where
g < 0. In order to illustrate these concepts, imagine a huge
number of “critical”situations to be examined by avalanche
experts in order to assess the probability of avalanche occur-
rence. Assume that in each of these situations all the basic
variables could be measured. These joint measurements
could then be used to establish the unknown f(z). The inte-
gral above should then in principle give the same value as
the proportion of the critical situations that caused an ava-
lanche to occur.

In general, the py integral cannot be solved analytically,
partly due to the generally complicated boundary between
the safe and non-safe domain in z space. FORM is an ap-
proximate method to calculate p; based on the following
two steps:

1. The vector of basic random variables X is transformed
into a vector Z of independent N(0, 1) variables by ap-
plying the Rosenblatt (1952) transformation.

2. The transformed limit state function g{z(z)) is linear-
ized at the point of maximum probability density, i.c.
the point on the failure boundary closest to the origin in
z space, which is found by numerical searching algo-
rithms.

The linearization point, 2%, is called the design point,
and the distance from the origin to z* is called the reliability
index, d (rather than the normal designation 3 to avoid con-
fusion with the § angle above). It can be shown that the py
value found by this hyperplane approximation to the gener-
ally curved failure boundary is

pr = ®(—d), (6)
which increases with decreasing d. ® is the cumulative
standard N(0, 1) distribution function. The FORM approxi-
mation is justified by the fact that the linear approximation is
best where the probability density is largest.

The directional cosines, 7 (rather than the normal desig-
nation « to avoid confusion with the a angle above), of the
vector 2* are called the sensitivity factors, because they indi-
cate the relative influence of each basic variable on the reli-
ability index. Note that the sensitivity factors combine the
sensitivity of the original deterministic limit state function
with the variance of the variable.

If some of the basic variables are correlated, the so-

called representative sensitivity factors, -y, are more appro-
priate than <y as indicators of influence on py. These are
defined as

Tri = K(I’—l(F(‘T:))v i=1,..,n, (7)

where K is a normalizing constant so that Y~ 42 =1, &L is
the inverse cumulative standard N(0,1) distribution func-
tion, and F(z;*) is the value of the cumulative distribution
function of z; at the design point, 2*. For uncorrelated vari-
ables v9 = 7.

Monte Carlo simulation

The FORM approach described above relies heavily on the
ability to find the design point, 2*, accurately, as well as on
the assumption of a reasonable hyperplane approximation
to the true failure boundary. In worst case with a very curved
boundary at the design point, ps can be wrongly estimated by
several orders of magnitude.

Monte Carlo simulation is a supplementary and very
useful tool for estimating the unknown py value, as well as
examining if the design point found by FORM is reason-
able. The simplest approach is to generate 7 random
N(0,1) variables, Zy, ..., Z,, one for each stochastic vari-
able, X}, in the mechanical model, then calculate the corres-
ponding variable values for x; (by applying the inverse
Rosenblatt transformation) and the corresponding safety
factor Sr and g(X) = Sr — 1. If this procedure is repeated
Niim times, say, and N_ of these simulations give negative
g(X) (i.e. an avalanche release), an unbiased py estimator
pjﬁm is given as:

sim __ N_
Py = Naw (8)

Further, N_ is binomially distributed Bino(Nsim, py), so
that N_ =100 is sufficient in most cases to obtain a relative
accuracy of about 10%. This corresponds to a required
number of N = 100/p; simulations.

Monte Carlo simulation can also be applied to examine
the accuracy of the reliability index, d, and the design point,
2%, found by FORM, for example by restricting the
sampling domain to an n-dimensional small hypersphere
with origin at 2*,

dsim = Iéli{)l(lzll’ ey IZNsiml) ) (9)
and with 2%, equal to the z corresponding to dyip,.

If the simulations provide results similar to those of the
FORM analysis, this is a good quality support to the latter.
If not, one should be extra-careful in the interpretations of
the FORM results. When the py results deviate substantially
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Fig. 3. Representative sensitivity factors ¥, with sign indicating
direction of tnfluence on d.

(e.g. by one order of magnitude), the simulated py value
should be preferred.

In cases where p; is so small that the numerical effort by
the described method becomes prohibitive, there are other
efficient techniques available for obtaining reliable py esti-
mates. Trusting that a proper design point is found (by
FORM), the sampling domain can be restricted to the non-
safe area outside the n-dimensional hypersphere in Z space
with centre in the origin (Harbitz, 1986). By applying an ap-
propriate variable transformation of z it can be shown that
the required number of simulations is reduced by a factor
one to the probability mass outside the d sphere, the latter
probability found from the chi-square distribution with n
degrees of freedom (Harbitz, 1986).

Calculation example

The “standard” slab avalanche is used. Nine basic variables
are defined with the probability distributions given inTable
2. The mean values and standard deviations are chosen such
that most of the variables span a range in agreement with
the values presented inTable 1.

A correlation coefficient p.(In¢,Ing;) = 0.8 is assumed
between Inc and Inoy (cohesive and tensile strengths).
According to McClung (1987), there is a scale effect on the
average shear resistance of the weakness plane such that
larger areas tend to have a lower shear resistance. In order
to model this, the negative correlation coefficients

pc(InTs1n B) =—0.5 and pc(In 75In L) =—0.5 are used.

FORM results:

Using the FORM method gives the reliability index d =
1.5302 and the probability of an avalanche occurring
pf = ®(d) = 0.0630. Representative sensitivity factors, 7,
are illustrated in Figure 3, demonstrating that shear resis-
tance and snow-slab dimensions (length and width) domi-
nate the influence on py. If the correlations between shear
resistance and the snow-slab dimensions are removed, the
d value is increased from 153 to 1.98, corresponding to a
decrease of py from 0.063 to 0.024.

Monte Carlo simulation results:

ps = 5109/100 000 = 0.051 (100 000 z simulations).

dsim = 1.5303 based on 100000 z simulations in sphere
around design point with radius 0.1.

The simulated design point based on dsim deviates negligibly
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from that found by the FORM approximation. The simula-
tions give a strong indication that the reliability index and
the design point found by FORM is accurate. The py value
0.051 based on simulations is more reliable than the value
0.063 found by FORM due to the large number of simula-
tions (standard deviation of p; equal to 0.0007). However,
the two py values are pretty close, indicating that the linear
approximation used by FORM is reasonable in this case.
First-order reliability analyses along with higher-order
approximations and simulations are presented by Nadim

(1999).
3.2. Model based on observed avalanches

It is very difficult to quantify the annual probability of snow
avalanche occurrence on the basis of mechanical models. In
some areas where general climatic conditions and topog-
raphy are favourable for avalanche activity, local wind con-
ditions may prevent the accumulation of snow and an
avalanche would rarely occur. As an alternative, two funda-
mentally different statistical approaches are presented below.
Now py is defined as the probability of an extreme ava-
lanche occurring in a specific path during one year, which is
assumed to be small (p; <~ 0.1). It is assumed that the prob-
ability of more than one (extreme) avalanche in one year is
negligible, and that the probability in a future year is inde-
pendent of avalanche activity in previous years. The number,
7, of avalanches occurring during a period of n years, condi-
tional on py, is then binomially distributed, Bino(n, py):

frlp)) = 1 —pp)*", r=0,1,.,n  (10)

The return period, At; & 1/py, is the mean time period
between successive avalanches. Let AT, denote a random
period between two successive avalanches. It can be shown
that given the assumptions above, AT; is approximately ex-

ponentially distributed with mean At;:
fAT) = (1/At)e™8T/5 - AT, >0.  (11)

Correspondingly, the number of avalanches, Na,, occur-

10
N
] \/ NJ avalanche gbserved in 8lyears
6
g
=
4
Nd avalanche observed in 3 L/ears
2 No ayalanche obia'ved the first year
N\ Prior (diffus¢) distributiof
N \\\ I
\\
0 . ' v — -
0 0.2 04 0.6 08 1
Py

Fig. 4. Probability distribution for annual avalanche occur-
rence after 0, 1, 3 and 8 years of observation of no avalanche.



ring during any time period, At, is approximately Poisson-
distributed with meanm = At/At,:

mN“ o™
f(Nay) = N
The general problem considered is that py (and corres-
pondingly, At,) is not known and must be estimated. Two dif-
ferent approaches to this estimation problem are treated
below: the classical approach, where py is considered a con-
stant and the observation 7 is the only stochastic variable, and
the Bayesian approach, where py and r are both stochastic.

, Ny >0. (12)

The classical approach

Within a classical statistical framework py is considered a
constant, and the term probability has a strict frequentistic
interpretation. This is equivalent to saying that py = _ r/n.
In practice, n is limited, and the maximum likelihood esti-
mator py = /7 is an estimator for py which becomes better
with increasing . If, for example, r =1, i.e. one avalanche
has occurred during an observation period of n =200 years,
the estimate p} = 1/200 is quite uncertain.

Assume now that r = 0 and n = 200, i.e. no avalanches
occurred in an interval of 200 years. In this case the point
estimate py = 0/200 = 0 is useless. Try, however, to find a
conservative upper value, Uy 0.95, for py where “95% cer-
tain” is not exceeded, based on the observation rgps = 0. A
classical approach to do this is to construct a 95% confi-
dence interval, [0, Uy, 0.9s), for ps. The upper interval limit
U = Uy, 095 is then found from the cumulative binomial dis-
tribution function as follows:

P(r < rops—olpy = U) = 0.05
Tobs=0

= Z (zOO)UT(l _ U)200—r — (1 _ U)200 (13)
r=0

= Up, 095 = 1 — 0.05Y/2° = 1.49%.

It can then be stated with“95% certainty” that py is not
larger than 1.49% (more strictly, the observed result or less
conservative results (smaller r when rops > 0) would have
occurred at most 1in 20 (5%) times if py was really larger
or equal to Up, o.95). This concept can be extended to a gen-
eral certainty level, 100(1 —€)%, and a general value for n
and 7obs by replacing 200 with n, rops with any value
between 0 and 7, 0.05 with ¢, and 0.95 with 1 —€. In this gen-
eral case, however, Up1_ is not given as a simple explicit
expression and must be found numerically, based on the
cumulative Bino(n, p) distribution with p as the unknown.

The advantage of the classical approach is that values
for py with specific “certainty” levels, where the term cer-
tainty and probability are defined in a strict, scientific man-
ner, can be constructed. The disadvantage is the quite rigid
concept of “an imagined infinite number of observation
periods under identical conditions” needed to justify our
assumptions when only a few observations are available.
Another disadvantage 1s that when considering a specific
path with only a few or no observed avalanches, it is difficult
to take a priori knowledge into account (e.g. observations
from other and similar paths). Here the Bayesian approach
serves as a formal alternative where, for example, expert
judgement can more easily be taken into account.

The Bayesian approach

Contrary to the classical approach, the parameter py is trea-
ted as a stochastic variable with an a priori probability den-
sity function, 7(py), called the prior. The prior can be based
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on subjective knowledge, historical observations or both.
The term prior reflects that it is established before (new)
observations are made. Once new observations are avail-
able, the so-called posterior probability density function,
f(ps|r), for py conditional on r can be found. The posterior,
f(pg|r), is proportional to 7(py) and the likelihood f(r|ps),
the latter now considered as a function of py. All estimation
of ps is based on the posterior. Based on a squared error loss
function (Berger, 1980), the Bayes-estimator, pj, for py,
equals the mean in the posterior, f(p¢|r).

The Bayesian approach is particularly useful if a good a
priori knowledge exists (e.g. observations from similar
paths) but poor observations from the actual path (e.g. r =
0). It can also be implemented, however, if no a priori know-
ledge is available, by applying so-called non-informative, or
“vague”, priors.

Technically, the Bayes approach is particularly conveni-
ent if the prior and the posterior belong to the same class of
distributions. In our case, the beta distribution beta(a, b),
with mean a/(a + b), is such a conjugate class of priors, i.e.

w(py) o P}"l(l —pf)b_l, O0<pr<i;a>0,b>0.
(14)

The class of beta distributions is quite rich, including the
vague prior mo(py) = 1(a = b = 1), as well as conservative
(a =1, b < 1) and non-conservative (a < 1, b =1) alterna-
tives. A particular choice of a vague prior, the Jeffrey’s prior
7y, is obtained with @ = b = 1/2, which is invariant with
respect to transformations of py (Carlin and Louis, 1996).
If, for example, p’ = In(py) is considered, the probability
density function of p’ will be identical to 7y if 7(py) = 73.
Note that 7y returns considerably less conservative esti-
mates of p; than 7, despite the fact that they are both con-
structed to be vague. For large values of n, the difference
between the conservative alternative and g is negligible.

The empirical Bayes approach is an iterative process
where the posterior from the last observation is used as a
prior before a new observation. As an illustrative example,
let the prior w(ps) = I be applied before the first year of
observations, which will give one or zero avalanches. The pos-
terior, fn(ps|r), after n years of observations with totally 7
avalanches observed, is then

Jfo(pslr) = beta(r+1,n+1) (15)
with Bayes estimate
pr=(r+1)/(r+n+2). (16)

As an example, r = 0 and n = 200 gives the estimator
Py = 1/202. Some examples of the updating procedure are
shown in Figure 4.

Analogous to classical confidence intervals, a 100(1 —€)%
credibility interval for py, [0, Up, 1-¢}, can be constructed. In
this case Up, 1 is identical to the upper ¢ fractile in the pos-
terior, which formally is found by solving the equation

P(ps > Up1—¢lr) =€
& Plpy <Upr-¢lr)=1—¢ 17
= Up,1-¢ =B'(l-e;7+1, n+r+1),
where B! denotes the inverse cumulative beta distribu-
tion with argument 1 —¢ and parameters a =741 and
b=n+r+1.
Contrary to the classical approach, it is now meaningful

to say that the probability of the true ps value being located in
the actual interval is 100(1 —¢) %, but the probability term
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Fig. 5. Comparison between classical ( solid lines) and Bayesian
(dashed lines) approach concerning the certainty level 1 — € of
Dy estimates for increasing number of avalanches from left
(r=0) to right (r=25) when the observation period is
n = 200 years.

now does not have a frequentative interpretation due to the
vague subjective probability concept involved in the prior.

If again the case 7 = 0, n =200 and £ = 0.05 is consid-
ered, the cumulative posterior is

Byp(u) =1—(1—u). (18)
Based on Equation (17) it is therefore found that
1—(1-u) =1-0.05

(19)
= u="U, 095 =1 —0.05"/2! = 1.48%,

which is very close to the value found by the classical
approach. In Figure 5 the two approaches are shown for dif-
ferent values of € and . The correspondence between the two
approaches decreases with increasing 7, with the Bayesian
approach giving the least conservative alternative. By apply-
ing Jeffreys prior, even less conservative estimates would
have been obtained. In the Jeffrey case U, g95 = 0.95%, i.e.
considerably less than the estimate of 1.48% based on the flat
prior. This illustrates that one should generally be careful in
applying a Bayesian approach, and in particular assess the
sensitivity of the choice of the prior.

4. APPLICATIONS IN HAZARD ZONING
4.1. Introductory remarks

As an example application, a “safe” run-out angle, o, is now
calculated based on the criterion that the annual probability
of being hit by an avalanche does not exceed ps = 1/At;,
where At is the “safe” period. As an example, At;=
1000 years and ps = /1000 if a “1000 year” avalanche is the
safety criterion. A major problem is the generally poor know-
ledge of the return period, At,, or correspondingly, the
annual probability of avalanche release, py = 1/At;. The
certainty level assigned to the a5 value is therefore strongly
related to the certainty level selected for the py estimate. The
classical approach of a confidence interval described in sec-
tion 3.2 is still applied, which gave results similar to or more
conservative than the Bayesian approach with a flat prior.
Example calculations for a Bayesian approach are presented
by Nadim (1999) and adapted to this paper by Harbitz and
others (2001).
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Further, the extreme-value model and the single-value
model are considered in two fundamentally different ways
to interpret the /3 model. It will be outlined how a is cal-
culated based on each of these approaches, and a compari-
son will be made between them.

An important parameter involved in both approaches is
ms = Ats/At,,i.e. the ratiobetween the safe period and the
return period. Furthermore, the return period can be pre-
sented as a product At, = Aty Na, where Aty is the aver-
age return period between weather situations with acute
avalanche danger and Ny is the average number of such
acute situations between each avalanche realization.

4.2. Application of the extreme-value model

It is now assumed that the reported « angle in each ava-
lanche path is the most extreme after IV avalanches, and that
N is large enough for the a angle to follow a known extreme
value distribution (Gumbel). It is further assumed that both
N and the observation (return) period do not vary substan-
tially between the paths on which the &/ regression line is
based. Exceptions from these assumptions may explain “out-
liers” in the regression analysis.
Under the assumptions above, the a/3 model is

a(mg) = 0.968 — 1.4° + b(ms) + W, (20)

where W is Gumbel-distributed with zero mean and stan-
dard deviation o = 2.3°. Based on the properties of the
Gumbel distribution, the dynamics of the regression line is
now reflected through the parameter b(mn;):
b(ms) = —6'2.2.3° . In(my) /7. (21)

As an example, assume At = 200 years and At = 1000 years,
i.e. mg =1000/200 = 5. In this case b(m;) =—-29°, and a(5) =
0.963—4.3° is a possible estimate for a“safe area” This estimate
corresponds to the mean 1000 year avalanche, i.c. the mean of
a huge number of imagined most extreme avalanches during
many 1000 year periods. Other candidates are the modal
value, analogous to how the “100 year sea wave” is defined,
and the median. Due to the skew property of the Gumbel dis-
tribution, the mean value is the most conservative choice, and
the modal value is the least conservative.

Let Aas(ms) denote how much ¢ is below the original
a/ P regression line 0.963— 1.4°. The three mentioned alter-
natives then provide

Aa’s,mean = 61/2 -2.3°- ln(ms)/7r
Aas, median — AO‘s,mean —0.29-2.3° (22)
Ao mode = A mean — 0.45 - 2.3° .

The mean is about 1° more conservative than the mode. The
three Aq, functions are shown as a function of m in Figure 6.

Note that the three expressions and the differences
between them strongly rely on the assumption that o is the
standard deviation in the Gumbel distribution. If there are
substantial differences in the number of avalanches behind
the different o observations, but the Gumbel approach is
still appropriate, the estimated o value also includes the N
variation among paths. In this case the standard deviation
in the Gumbel distribution is smaller than ¢, and the ex-
pressions above are too conservative.

4.3 Application of the single-value model

The o/ regression line is now
a=0966-14"+W, (23)
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Fig. 6. Distance of “safe” run-out angle, o, from original
/(3 line as a function of T based on the single-value model
and the extreme-value model. Note the close relationship
between extreme-value model based on mode and the single-
value model.

where W ~ N (0,2.3°). As explained in section 1, the “safe”
value, as, is now found by use of the product of run-out ex-
ceedance probability times the annual probability of ava-
lanche release, i.e.

ps = P(a < ag)py

Ds 1
= Pla<ay) =—=—
( 0 Py ms (24)
af1-1
= Aa; =2.30 ,
ms

based on the properties of the normal distribution. Aag as a
function of my is shown in Figure 6. As shown, it is very close
to the corresponding extreme-value expression based on the
mode in the Gumbel distribution.

If now the situation is the opposite (i.e. as = 20.3° repre-
sents a prescribed point of interest, e.g. a house or a road), the
unknown ps can be found as follows: Consider an avalanche
path profile with = 25°. The prescribed point of interest
along the path will be hit if & < 20.3°. From Equation (1), the
expected value of a is 22.6°. The probability that an extreme
avalanche will reach the prescribed point is then p; = P
(@< 20.3%)py=9[(20.3°-22.6°/2.3°|ps =2.3°]ps =B(-1.0)ps
== 016pf

4.4. Confidence intervals for hazard zones

It has been shown how a “safe” value a5 can be calculated
when m; is known. An assigned specified certainty level to
o can be found by constructing confidence intervals [0, Up, ]
for m based on a corresponding interval [0, Up] for ps as
described in section 3.2. This is due to the monotonic relation-
ship ms = Ats/At; = Atsps. When Uy is found, Uy, is sim-
ply found by the relation Uy, = AtUy,. This is illustrated
with the example that 7 = 0, i.e. no avalanches are observed
during an n = 200 years period. In section 3.2 it was found
that Up 095 = 149%. With Aty = 1000years, Up, 095 =
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1000 x 0.0149 = 14.9. Using this value in the various Agg
expressions (Equations (22) and (24)) gives:

A, mean = 4.8°(extreme-value model)
Ao median = 4.2° (extreme-value model)

(25)

A mode = 3.8°(extreme-value model)
Aqg, = 3.4°(single-value model) .

Thus, all values above are assigned a “95% certainty
level”, which could be changed to any other level 100(1 — €)%
by replacing 095 with 1 —¢.

Technically the procedure above can also be performed
based on subjective judgements for a path with no avalanche
observations. If, for example, avalanche experts are confi-
dent that the path is similar to other paths for which obser-
vations r and 7 exist, the latter can be used to estimate At,,
and correspondingly ms = At,/At;. In this case a reason-
able approach is to apply the binomial distribution with
parameters Xr and Xn, i.e. the accumulated values from
the similar paths.

5. CONCLUSION

A mechanical probabilistic model for avalanche release is
applied in combination with a statistical/topographical
model for avalanche run-out distance to obtain the uncondi-
tional probability of extreme run-out distance.

For the mechanical model, FORM and Monte Carlo
simulations for calculating the annual probability of ava-
lanche release are compared. The simulations give a strong
indication that the FORM approximation is reasonable.
The example application demonstrates that FORM is a
powerful tool for performing systematic parametric studies.
It provides a rational framework for decision-making when
there is a large uncertainty in the input parameters, and it
identifies the relative contribution of the input variables to
the overall uncertainty. This information helps the engineer
to focus on reducing the uncertainty in a few important
parameters in order to achieve a significant reduction in
the overall uncertainty.

The interpretation of the statistical/topographical model
as an extreme-value model or as a single-value model is dis-
cussed. The ambiguous interpretation of the model reflects
the need for more than one observation in a sufficient number
of paths. It is outlined how a“safe” run-out angle is calculated
based on each of the two approaches, and how a specified cer-
tainty level can be found by constructing confidence intervals
based on the annual probability of avalanche release.

Comparisons of a classical approach where the probabil-
ity of an avalanche occurring is a strict frequentistic constant,
and a Bayesian approach with stochastic probability and a
vague prior reveal that the correspondence between the two
approaches decreases with an increasing number of obser-
vations, the Bayesian approach being the less conservative.

Finally, example applications in hazard zoning are pre-
sented, with emphasis on how the influence of historical
observations, local climate, etc., on run-out distance can be
quantified in statistical terms and how a specified certainty
level can be found by constructing confidence intervals for,
for example, the most likely largest run-out distance during
various time intervals. Owing to the quantified uncertainty
inthe probability of extreme run-out distance, it is suggested
that the areas susceptible to avalanches be indicated by
zones rather than demarcation lines only.

297



Harbitz and others: Probability analysis in snow avalanche hazard zoning

It is recommended that further work on probabilistic
analysis in snow-avalanche hazard zoning should:

1. implement probabilistic stability analysis for models
that account for the way snow shear strength depends
on the rate of deformation, as well as for progressive
shear failure due to local stress concentration and frac-
ture propagation on the weakness plane (unzipping
mode of failure);

2. provide several avalanche observations in each path in
order to obtain a proper interpretation of the /3 model
and the residual distribution involved, thus providing a
more reliable hazard zoning;

3. establish uncertainty measures for the “safe” run-out
angle by constructing confidence intervals for this par-
ameter with different confidence levels, where all statis-
tical uncertainties are taken into account, including the
uncertainty of the regression line itself;

4. validate the &/ model statistically and examine the
sensitivity on the “safe” run-out angle measures for dif-
ferent choices of residual distributions.
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