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ABSTRACT. The Norwegian Geotechnical Institute (NGI) has been operating the
full-scale avalanche test-site Ryggfonn in western Norway for more than 25 years. Dur-
ing those years, measurements from about three dozen dry-snow avalanches have
provided information on front velocities and runout distances.
Some of those measurements were used to calibrate a simple avalanche model follow-
ing a well-defined probabilistic method.. Traditionally, model parameters of those kinds
of models were evaluated from runout analysis disregarding any dynamics. The set of
roughly 20 observed avalanches from one single path including, estimations of the front
velocities at three points in the lower third of the track provided a unique opportunity for
introducing uncertainty quantification methods for evaluating the performance of similar
kind of competing models.
We present the model calibration and results from the model performance testing.
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1 INTRODUCTION

In avalanche prone areas, hazard and risk assess-
ment for landuse planning involves the estimation of
the runout of potential avalanches. Methods for de-
termination of the runout may be grouped into two
groups: 1) based on statistical methods like the α− β
model (Bakkehøi et al., 1983), or 2) based on nu-
merical avalanche models like the PCM-model (Perla
et al., 1980) or Voellmy-Salm type models (Salm et al.,
1990). It is certainly true that there are more sophis-
ticated models as the mentioned ones, but these sim-
ple models are sufficient for the purpose of the present
paper, and many of the more sophisticated models are
based on similar rheological approaches.

Whereas the determination of the runout distance
using statical runout models may be sufficient for a
hazard assessment, a risk assessment requires also
an evaluation of the consequences. In the case of lan-
duse planning, this involves the estimate on destruc-
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tive forces due to the avalanche, and requires velocity
and density estimates of the avalanche. To that end,
numerical models are often times the tool of choice.
However, numerical models need a calibration of the
their parameters, and if they are used in a probabilistic
approach, probability distribution functions of parame-
ter are needed. In the cases of the PCM-model and
Voellmy-Salm type models, two parameter need to be
determined. Traditionally, these parameters were esti-
mated by back calculation of observed runout distance
(e.g. Buser and Frutiger, 1980; Bozhinskiy, 2008). Us-
ing only the runout distance provides only one con-
strain for two parameters. That is insufficient to obtain
a unique parameter set. Only in few cases, information
on velocity observations were used, for example An-
cey and Meunier (2004), who based their analysis on
15 documented events reported in the literature. The
avalanches however originated from different paths.

In the following, we present a model calibration
based on on the Bayesian paradigm using infirma-
tion from front velocity measurements and observed
runout distances from a single path. In this way, it is
possible to obtain probability distribution functions that
may be used in probabilistic avalanche modeling.



Figure 1: Profile of the main avalanche track; the lo-
cations of the steel pylon (LC45), the concrete wedge
(LC123), and of the foot of the dam are marked with
crosses.

2 RYGGFONN TEST-SITE

The Norwegian Geotechnical Institute (NGI) has been
operating the full-scale avalanche test-site Ryggfonn,
Western Norway, for more than 25 years. The main
track starts at rime of a north facing bowl and has
a total drop height of about 900 m. The path itself
is slightly canalized. The horizontal runout distance
ranges typically between 1500 and 1850 m. Figure 1
shows a profile of the path. One particular character-
istic of this test-site is a 16 m high catching dam in the
runout zone. A more detailed description of the test-
site and its instrumentation can be found, for example,
in (Gauer et al., 2007a, 2008; Faug et al., 2008).

Typical avalanche sizes range between 104 m3 and
105 m3 snow, and maximum front velocities are up to
60 m s-1. Observations from this site include dry and
wet snow avalanches.

3 DATA ANALYSIS

From a total of approximately 70 to 80 observed
avalanches, data of 22 dry snow avalanches following
the main track, were available for this study. For all ex-
cept of one, there is velocity and runout distance infor-
mation in the lower third of the track. For the 19831031
event, only the runout is known.

Table 1 summarizes the velocity and runout data.
The estimated speeds are based on measurements,
(i.e. the timing of the front arrival at various sensors)
and/or timing of observations (e.g. video analysis)
(Gauer and Kristensen, 2005; Norem, 1995). Relating
a mean velocity to the midpoint between pairs of the

sensors may introduce a slight error with respect to the
real velocity at this location. This correction however
is not always possible or may introduce an even higher
uncertainty and therefore no correction was preformed
here.

Figure 2 plots the fraction of observed runout dis-
tances (i.e. the ratio between number of observations
per bin to the total number of observations). It also
shows the corresponding cumulative frequency. The
median coincide with the location of the dam and a
major number of avalanches just stop around the dam.
If the dam stopped those avalanches or if they had
stopped more or less independently is an open ques-
tion, although, it is not of concern for this study. How-
ever, there is also an approximately 50% chance that
one of the analyzed avalanches overtopped the dam.
At this point it is worthwhile to mention that the data
set is biased in this sense that it contains more data
from medium to large size avalanches. This is due
to fact that many observation origin from artificially re-

Table 1: Analyzed avalanches with respect to the
runouta

Date ULC UCD Ub lr
# yyyymmdd (m s−1) (m s−1) (m s−1) (m)
1 19750225 50 35 22 200
2 19831031 NaN NaN NaN 0
3 19840302 30 22 0 -20
4 19850213 34 26 17 70
5 19870128 48 44 40 225
6 19880315 20 1 – -120
7 19880411 38 33 27 45
8 19890217 22 1 – -100
9 19890403 22 13 – -30

10 19920311 0 – – -326
11 19930327 43 38 33 150
12 19940318 31 28 25 80
13 19950303 35 32 28 80
14 19970208 45 43 40 195
15 19970417 34 3 0 0
16 19990122 20 12 3 0
17 20000217 50 38 30 333
18 20030406 15 0 – -150
19 20040224 32 28 22 111
20 20040228 38 22 15 -10
21 20050416 33 6 – -50
22 20070322 35 15 0 0

aULC is the measured mean velocity of the front be-
tween the steel tower and the concrete wedge and re-
lated to the midpoint between both locations; UCD is
the velocity related to the midpoint between the con-
crete wedge and the upstream base of the dam; Ub

the front speed at the upstream base of the dam; and
lr is the runout along the track measured relative to the
crown of the dam (offset sdam ≈ 1940 m). Estimated
error ranges are: ∆U/U ≈ ±0.1; ∆lr/lr ≈ ±0.1;.



Figure 2: Fraction of observed runout distances (25 m
bins) and corresponding cumulative frequency; the lo-
cations of the steel pylon (LC45) the concrete wedge
(LC123), and of the upstream base of the dam are
marked with crosses.

leased avalanche, and smaller natural releases which
may have stopped in the upper part of the track es-
pecially in the upper blow were not observed or docu-
mented.

Figure 3 shows the cumulative frequency of the ve-
locities ULC , UCD, and Ub (see explanation in Ta-
ble 1). The scatter diagram in Figure 4 suggest that the
velocities are partly correlated. This is not that of a sur-
prise, but it is of importance in the following Bayesian
calibration. Figure 5 plots the mean retarding accel-
eration, aretLD

, for the stretch between the midpoint
of the steel pylon and the concrete wedge (referred as
LC), and the base of the dam versus the mean front

Figure 3: Cumulative frequency of the observed veloc-
ities ULC , UCD, and Ub.

Figure 4: Scatter diagram UCD vs. ULC , and Ub vs.
UCD. Numbers mark the respective event. The dot-
ted lines connect measurements form the same event.
The dashed line is thought as a guidance and indi-
cates a one to one correlation.

speed between those points (Uav = (ULC + Ub)/2),
for those avalanches that at least reached the dam.
The retarding acceleration seems to be independent of
mean velocity (there is no significant correlation) and
rather constant with a mean of about −4.6± 0.8 m s-2.
This value is slightly higher than the one given in (Faug
et al., 2008), where only those avalanches which over-
topped the dam were investigated. Nonetheless, the
values are in agreement with recent pulsed doppler
measurements (Gauer et al., 2007b).

Figure 5: Retarding acceleration, aretLD
, between LC

and the base of the dam vs. the averaged speed
Uav = (ULC + Ub)/2. The dashed line shows the
mean and the dotted ones plot ± one standard devia-
tion. Numbers mark the respective event.



4 AVALANCHE BLOCK MODELS

In the following we present the results of a Bayesian
calibration of a simple block model.

dU2

2 ds
= g sinφ+ aret , (1)

where U is the velocity of the mass block, s the travel
distance along the track, g is the acceleration due to
gravity and φ the local slope angle. For the retarding
acceleration, aret, the following approaches were in-
vestigated:

• Coulomb-type, including centrifugal forces

aret = −a0 max(0, g cosφ+ κU2) , (21)

where a0 is the friction factor and κ the curvature
of the track;

• PCM-type (Perla et al., 1980);

aret = −a0 max(0, g cosφ+κU2)−a2U
2 , (22)

where a2 is a parameter;

• constant deceleration

aret = −a3 , (23)

where a3 is a constant;

The first two approaches are commonly used for
avalanches, especially the PCM-type or the related
Voellmy-Salm type (Salm et al., 1990). Although a0

in model (21) and (22) have similar physical inter-
pretation, the actual value will differ. The third ap-
proach may be motivated by assuming a constant
shear strength of the snowpack or flowing snow, re-
spectively (Grigoryan, 1979). Also radar measure-
ments may suggest a rather constant mean retarding
acceleration (Gauer et al., 2007b).

5 PROBABILISTIC CALIBRATION

The probabilistic calibration of a physical model is the
probabilistic solution of an inverse problem (Medina-
Cetina, 2006; Yang et al., 2008). It introduces the
uncertainty on available evidence (observations and
physical modeling) for the integration of a joint proba-
bility distribution by the use of the Bayesian paradigm
(Papoulis, 1991):

π(Θ|dobs) =
f(dobs|Θ, g(Θ))π(Θ)∫
f(dobs|Θ, g(Θ))π(Θ) dΘ

(3)

where the prior π(Θ) introduces the a-priori state of
information associated to the a set of parameters Θ,
which in our case is defined as the vector of the model
parameters Θ = ai, where i = 0, i = 0, 2 and
i = 3, depending on the model in use. The likelihood
f(dobs|Θ), g(Θ) represents the a-priori state of infor-
mation associated to the potential of the parameters
Θ to match the observations dobs or to help to match
them if they are embedded into the avalanche predic-
tive model g(Θ). The posterior π(Θ|dobs) is thus the
joint probability function between the a-priori states of
information associated to both the prior and the likeli-
hood.

For the parameterizations of the avalanche models
introduced in Equation (1), it is assumed that the co-
efficients ai follow vague priors, and that the likelihood
f(dobs|Θ) follows a Gaussian-type behavior.

For estimating first and second moments of the pos-
terior, or for estimating marginal statistics for each pa-
rameter included in Θ, it is required to integrate the
posterior with respect to the parameters. This integral
can become cumbersome when the number of param-
eters spans in a high dimensional space. Fortunately
the integral can be solved numerically. This solution
yields a full description of the uncertainty associated to
the model parameters Θ conditioned on the available
data, which contrasts typical optimization approaches
(deterministic solution of inverse problems) where only
one set of best estimates are retrieved.

An efficient way to solve the posterior integral is us-
ing Markov Chain Monte Carlo MCMC (Robert and
Casella, 2005). A useful property of the MCMC is that
it converges to the target joint density as the sample
integration grows. For this work, the decision rule that
determines which samples are ’accepted’ or ’rejected’
is the Metropolis-Hastings (MH) criteria. Under these
premises, the posterior integration at the MH ’state’ of
the chain s+1 iteration is obtained by sampling a can-
didate point Y from a proposal distribution q(.|Θs),
where the candidate point Y is accepted or rejected
as the next step of the chain with probability given by:

α
(
Θ̂s,dobs

)
= min

(
1,
π(Y|dobs) q(Θ̂s|Y)
π(Θ̂s|dobs) q(Y|Θ̂s)

)
(4)

For the MCMC sampling, the distribution of interest
f(.|dobs) appears as a ratio, so that the constant of
proportionality cancels out. Additionally, the evaluation
of the posterior requires discarding the first iterations
called the burn-in points, before it reaches the station-
ary condition from which the statistical inferences are
generated.

Results from the probabilistic calibration included
the three proposed avalanche models: The Coulomb-



Figure 6: 2D frequency histogram of model M2 param-
eters.

type (M1) (21) , the PCM-type (M2) (22) and the con-
stant deceleration-type (M3) (23). Information from the
observations including the correlation between the ve-
locities and run-out distance were introduced into the
likelihood formulation. The priors of the model param-
eters were defined based on the results of previous
optimization analysis performed on the same data and
the same models. In this way, after the posterior inte-
gration, a full probabilistic description conditioned in
the same data is retrieved for each avalanche model.
For instance, Figure 6 presents the histogram of the
MCMC samples obtained from M2. This figure shows

Figure 7: Frequency histogram of model parameter for
M1 (top) and M3 (bottom).

Figure 8: Comparison between expected velocity
model predictions at point LC.

a bimodal distribution with non-linear relationships be-
tween parameters a0 and a2. These type of inferences
are very appealing characteristics of the probabilistic
calibration as opposed to one-best estimate of typical
optimization approaches, which cannot identify asso-
ciations between parameters. Figure 7 depicts the fre-
quency histogram for the two one-parameter models
M1 and M3, respectively.

The solution of the probabilistic inverse problem
then can be used to simulate potential realizations of
the avalanche models. These represent at each read-
ing point (LC, CD, b, and R) the expected or average
responses of each model (not the data simulation).
For instance, Figure 8 shows a comparison between
the cumulative density functions of the the three mod-
els of interest, representing the expected model pre-
dictions at the reading point LC. As a reference, the
empirical cumulative density function of the observa-
tions is plotted in the background. From this figure is
observed, that model M2 hits practically the mean of
the observations, while the M1 and M3 are significantly
biased. Similarly, an analysis on the run out distance
(Figure 9), shows that models M1 and M2 approxi-
mate better to the mean of the observations (plotted
on the background), with model M2 having the least
uncertain response on the mean of the predictions. In
terms of run-out distance, Model M3 performance is
relatively lower compared with M1 and M2.

6 CONCLUSIONS

Simple block models are still in use for runout predic-
tion for hazard assessment. The performance test us-
ing observed avalanche data (velocity at three points
and runout distance for 22 events) shows that the two-



Figure 9: Comparison between expected run out
model predictions.

parameter model performs best in predicating both
the expected velocities and expected run out distance.
This is not totally surprising; having two parameter
there is more variability to tune. However, more sur-
prising is that the constant deceleration model still pre-
forms reasonable well. This suggests that the retard-
ing acceleration on average seems to be rather con-
stant during the avalanche descent, an observation
that also radar measurements seem to indicate (Gauer
et al., 2007b) and it is also reflected in the measured
retarding accelerations (Fig. 5). On the other hand,
the Coulomb-type model over-predicts the velocity at
LC considerably, which suggests that the retarding ac-
celeration in the steep part of the track is too low in
this case. Taking the mean of a0 (≈ 0.47) for M1,
aret is approximately -4.0 m s-2 compared to -4.5 m s-2

in the case of M3 and approximately -4.7 m s-2 for M2
(a0 = 0.2 and a2 = 3 ·10−3 m−1) in the surrounding of
LC. This implies that models based only on Coulomb
frictional rheology are not able to capture the dry-snow
avalanche flow.

A next aim will be to retrieve a parameter distribution
that will also reflect the distribution of the observations.
Although, it is not expected that the constant deceler-
ation model M3 is cable to reproduce the low veloc-
ity tail of the observed distributions. The bowl shape
topography in the upper part of the Ryggfonn path
requires that the maximum a3 is less then 4.7 m s-2

for model M3 to pass through the bowl. This how-
ever implies that the minimum velocity at LC will be
about 30 m s-1, which is on the other hand close to the
observed mean. Similar limitations on the parameter
choice are likely to apply also for model M2.
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