Comparison of snow pressure measurements and theoretical predictions
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Measurements of snow creep pressures from the centre section of a 3.4 m high and 15 m long avalanche-defence supporting
structure located on a mountain in western Norway are presented. The site has a deep snow cover and an average slope angle
of 25°. The measurement conliguration corresponds to plane-strain conditions and the data, along with measured snowpack
parameters, allow comparison with simple theoretical predictions. The analysis shows that the average pressure on the structure
may be calculated fairly accurately using lincar, viscous modetling for the snow defermation. The maximum pressures proved 1o
be higher than that provided by a lincar model and this is considered characteristic of nonlincar material. The implications of these
results for estimates of design loads are discussed.
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L'article présente des mesures de pression de fuage de la neige sur la section centrale d'une structure de protection contre les
avalanches de 3,4 m de haut et 15 m de long, située sur une montagne dans I"ouest de la Norvége. Le site présente un couvert de
neige épais et une pente moyenne de 25°, La configuration de ITinstallation de mesure correspond 3 des conditions de déformation
planc et les données, associées aux paramétres mesurés du couvert de neige, permettent une comparaison avee des prédictions
théoriques simples. L*analyse montre que la pression moyenne sur la structure peut étre calculée avec une précision acceptable au
moyend’un modéle visqueux linéaire des déformations de la neige. Les pressions maximum se sont avérées plus fortes que celles
déduites d'un medele linéaire, ce qui est considéré typique d'un matériau non-linéaire. Les implications de ces résultats sur

I"évaluation des charges de caleul sont discutées,

Mots-clés: pression de neige, fluage, mesure, viscosité, déformation plane, éléments finis.
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Introduction

An important engineering problem concerning the
design of structures on mountains with deep snow cover
is the calculation of expected pressures due to interrup-
tion of srow creep (internal deformation) by the structure.

The simplest problem in relation to snow creep
pressures is prediction of pressures at the centre of a long
avalanche-defence supporting structure. This problem s
of long-standing interest in snow mechanics; it was
originally posed in the doctoral thesis of R. Haefeli
(Bader er af. 1939). It is also the only creep pressure con-
figuration for which serious analytic solutions have been
proposed to date, These solutions are used extensively to
aid in design considerations for structures.

In this study, creep pressures measured on the centre
section of an avalanche-defence supporting structure are
presented. The measurement site is in western Norway
(altitude 1170 m) on a mountain with a deep snow cover
on a nearly constant incline {average angle 25°). This
configuration eliminates edge effects near the lateral
ends of the structure, where fully three-dimensiona!
modelling may be required, and it produces planc-strain
measurement conditions.

The analytic models to date assume that snow behaves
as a linear, Newtonian viscous fluid. This is obviously
not a realistic assumption. It is of interest, however, to
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compare the field measurements with these models. This
comparison has two important motivating aspects: (1)
by comparing actual measurements with a linear, viscous
deformation model, those features of the problem that
deserve attention for future, more realistic constitutive
equations can be pinpointed; and (2} it would be very
convenient for applications if a linear deformation
mode] should prove useable for estimating the expected
pressures, because of the simplicity of the solutions.

In the present paper field data are compared with the
existing models of Haefeli (1948) and McClung (1982,
1984), and rigorous two-dimensional finite element
calculations of the linear problem are provided as a
check. The analysis indicates features of the linear
problem worth retaining in a predictive scheme and illu-
minates some features of the data that disagree with the
linear deformation model.

Experimental methods

Since the experimental methods for obtaining the
pressures are discussed in detail in another paper,' only
a short summary of the procedures is included here. Two

3. O. Larsen, M. D. McClung, and S. B. Hansen. The

temporal and spatial variation of snow pressure on structures:
in preparation.
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methods were employed: (1) direct measurement using
laboratory-calibrated earth pressure cells mounted on the
central portion of the structure; and (2} measurement of
strains in the steel beams of the structure using vibrating
wire strain gauges. These strains are subsequently used
to deduce moment, shear, and pressure diagrams that
describe the pressure dependence with depth on the
structure,

Results have consistently shown that the earth pres-
sure cell measurements are in fairly good agreement
with the estimates derived from the strain-gauge data,
provided the snowpack is dry. However, the carth
pressure cell data are highly unreliable when the
snowpack is wet. Thus, the pressure cell data are
regarded as a check on the second measurement method
when the snowpack is dry.

The second measurement method is used for the
analysis in the present paper, since the results appear to
be consistent]ly reliable. Figure 1 is a schematic of the
experimental setup, showing the location of the strain
gauges on the structure. Because the structure is very
rigid, the results lose accuracy when the product pgf is
much less than SkPa (p is average snowpack density, g
acceleration due to gravity, and # snowpack depth
perpendicular to the ground surface). For values of pgH
at 5kPa and above, the average pressure can be
estimated with less than 10% error; there is definitely
more error for estimates of maximum pressure because

the pressure distribution cannot be determined uniquely.
The rigidity of the system invalidates most of the
early-season data, when the snowpack is shallow. This
resulted in the loss of data for three winters when the
snow cover was shallow.

Figure 2 gives an example of the pressure distribution
with depth constructed from measured strains in the steel
beams of the structure. Ideally, the average of two such
diagrams, one from each of the main supports of the
structure, should be used. However, because of harsh
operating conditions, some gauges do not operate for a
portion of the winter so that sufficient data are usually
available for only one pressure diagram. The pressure
does not go to zero at the top of the structure in Fig. 2
because the snowpack exceeds the structure height. The
maximum pressure, o, and the average pressure, &,
are tdentified in Fig. 2.

To compare the measured pressures with simple
theoretical models, the following properties of the
snowpack were measured: density, temperature, and
rammsonde hardness profiles, layering, and crystal
types. Estimates were made of the free water content
through the depth of the snowpack. These observations
were made at least monthly, and sometimes more
frequently, throughout the measuring peried (Dec.—May)
for the winters of 1975-1976, 1978-1979, 19801981,
and 1981-1982). Glide shoes were placed on the rock
surface uphill from the structure and it was verified that
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FiG. 2. Typical pressure distribution {—) on the structure
versus relative height (z/H), where z = O represents the
snow /ground interface, Constructed from strains measured in
the steel beams of the structure for this example from 81-05-11.
(o) maximum pressure; & (---) average pressure,

there was essentially no slip of the snow cover over the
ground at the site.

Results and theoretical models

The measurements from the four winters are listed in
Table 1, where p is the average snowpack density and H
is the snow depth measured perpendicular to the ground
surface (snowpack depth lower than or level with the top
of the structure (3.4 m)). For portions of the snowpack
higher than the structure, the average density is p* and
the height for the snow above the structure is /' (see also
Fig. 1). The snow depth values in Table | are average
values measured upslope from the structure within its
zone of influence for creep processes predicted by simple
theory (McClung 1982). The densities were taken from
snow pits near the site, Analysis of the data from Table 1
in relation to measured values of temperature and hard-
ness from the snow profiles is given in Larsen et al.’

It is necessary to modify the previously derived snow
pressure equations to account for extra body forces when
the snowpack depth exceeds the structure height. This
may be accomplished by modifying the free surface
boundary conditions that are appropriate when the snow
depth is precisely equal to or less than the structure
height. For the case of free surface boundary conditions

at the top of the snowpack, following McClung (1982,
1984}, the average creep pressure on the face of a
structure perpendicular to the ground on a slope with
average angle s is given by

G 2 Ly ]"? costb(v)
1] agl?_smlb[(l—v)(f_l)] +_2— | —v

where v is the viscous analog of Poisson’s ratio for the
assumed constitutive equation, which is a Newtonian
viscous fluid with neglect of the static fluid pressure
term. For [1], L/H is given by an empirical equation
derived from numerical calculations (McClung 1984),
and it is assumed that there is no glide. The expression
for L/H is given as

L___ 1,2(1_")”4

[2] i 0.3[2cot)] T

When the snowpack exceeds the height of the
structure by H' and the average density above the
structure is §’ (Fig. 1), the free surface boundary
conditions may be replaced by imposing initial shear and
normal stresses on the surface level with the top of the
structure. The new shear and normal boundary condi-
tion stresses are given by p'gf’ sin { and p’' g’ cos &,
respectively. By repeating the derivation given by
McClung (1982), [1] may be modified to give

ﬁ. . 2 L 12
P M “’[ (m) (E)]

cos 1 ( v )
+ +
2 ! pH I\l —v

1+ ——
i),H’

For a simple comparison with the theory, it is
convenient to approximate the expression in brackets in
the second term as

1
1+ — | =1
pH
1+ =
p'H

so that [3] becomes

6’ ) 2 L 112
W Grremm S”‘"’[ (T—T) (ﬁ)]

+c05¢( v )
2 l-v

The advantage of this approximation is that for terrain
of constant incline {s, the stress ratio is a function of v
only. Calculation with the data from Table 1 shows that
the maximum error introduced by use of {4] instead of
[3] would be less than 7% in the worst case (76-04-14)
with v taken as 0.4, which is considered an upper limit.
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TasLE 1. Measured values of average and maximum pressure and related snowpack data

Average Maximum Stressuptotop Excess stress over  Total snow

pressure,  pressure,  of structure, top of structure, depth,
Date G (kPa) o, (kPa) pgH (kPa) p'gH’ (kPa) H+H' {m)
76-01-21 9 17 13.6 0.5 4.1
76-02-29 10 19 14.3 0.3 4.3
76-03-10 13 20 14.2 2.3 4.3
76-04-14 16 23 15.0 5.0 4.9
76-04-30 17 24 — —_ —
76-05-18 13 20 17.0 1.2 37
79-01-25 6 8 8.3 0.0 2.3
79-02-20 6 9 8.0 0.0 24
79-03-01 7 10 8.7 0.0 2.4
79-03-26 g 11 9.6 0.0 2.5
79-04-15 8 11 9.4 0.0 2.5
79-04-27 8 11 9.9 0.0 2.5
81-01-23 5 9 11.5 0.0 3.1
81-02-06 7 11 12,0 0.0 32
81-02-19 9 14 — — —
§1-03-01 11 17 13.0 0.0 3.2
81-03-27 1 19 14,3 0.0 314
81-04-07 1 17 14.3 0.0 34
81-04-17 11 19 14.4 0.0 34
81-04-27 12 18 — — —
81-05-04 13 20 14.5 2.7 4.1
81-05-11 12 18 15.7 0.4 35
82-02-17 4 7 5.9 0.0 1.8
82-03-05 4 7 7.0 0.0 2.1
82.03-25 4 7 6.2 0.0 1.7
82-04-07 6 8 7.2 0.0 2.1
82-04-14 6 8 7.3 0.0 2.2
82-05-09 6 9 8.9 0.0 2.3

The maximum error for (76-03-10) and (81-05-04) would
be about 4% and for all the otherdata points the maximum
error would be negligible.

Haefeli's (1948) model gives the average creep
pressure similar to [1] as

G _2{1-v\' cosxb( v )
5] f)g_H_—(l—-2v) bt ===

By the same procedure, Haefeli’s model is modified
to account for nenfree surface conditions at the top of the
structure:

) 2 1—v )2
O Gr+eane 3 ‘a““’(_—l = 2v)

+cos¢( v )
2 l—v

for cases in which the snow depth exceeds the structure
height.
Equations [4] and [6] do not account for extra shear

forces due to edge effects at the top of the structure when
the snowpack is higher than the structure (Fig. 2). This
consideration will be more important than the nonfree
surface effects introduced in these equations in some
instances. It implies that the estimates of average
pressure will be slightly low for these conditions.

Comparison with theoretical predictions

Given the measurement site with a slope of nearly
constant incline, the only free parameter in [4] and [6] is
v. This is also true for the full two-dimensional
plane-strain solutions.

Clearly an important consideration for evaluation of
the modelling is the range of expected values of v in the
density range of the experiments (300kg/m® =< p =
550 kg/m3). Salm (1977} has carefully reviewed the
data and theoretical predictions; a summary of his work
is as follows: Bader ez al. (1951) provided an extensive
range of laboratory estimates and they found values in
the range 0.09 = v = (.33 for densities from 200 to
550kg/m?. Pressure-at-rest field measurements by de
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Fic. 3. Stress ratio & /(pgH) versus v for the range 0 = v =<
0.4 for § = 25°. Predictions shown are; (@—@) finite clement
calcutations; (O---O) one-dimensional mode] with empirical
corrections; (O« -<) Haefeli's model.

Quervain (1966) and E. Klausegger (unpublished data),
quoted by Salm, indicate values intherange 0.08 = v =<
0.35 for this same density range. Haefeli (1966)
provided creep angles for alpine snowpacks from which
v may be extracted. These values are 0.16 =< v = 0.30
for p between 350 and 550kg/m*. McClung (1975)
provided similar data, which indicate values between
0.23 and 0.38, with an average value near 0.29 for final
densities between 500 and 550 kg/m?*.

Haefeli (1966) and Bader et al. (1951) also gave
expressions for v as a function of density based on
theoretical arguments and their data. These predictions
are0.18 =v=<0.31and 0.13 < v = 0.22 for 300 kg /m*
= p = 500kg/m’.

With the above considerations, in order to ensure that
the extreme limits of the data and theoretical predictions
are included, the limits are taken as 0 = v = 0.4, Figure
3 gives a comparison using [1], [2], and [5] for s = 25°,
Also shown in Fig. 3 are two-dimensional finite element
predictions. The assumptions for all of these calcula-
tions are: no slip on the structure, no glide, a free surface
at the snow /atmosphere interface and snow deforming
as a linear. Newtonian viscous material with neglect of

the static fluid pressure term. The finite element calcula-
tions assume plane-strain conditions and these results
give the *dynamic’ pressure due to interruption of creep
deformation by the structure, In addition, a ‘static’
pressure term must be superimposed to represent the
initial stresses in the formulation. This representation is
analogous to the second terms on the right sides of [1]
and [5] and is defined as

v H-:
[7] Polz)= =% L peosirdz’

v

Z

= vngco.st!J(l H)
where z is measured perpendicular to the ground starting
from z = 0 at the snow/earth interface. For the
calculations given in Fig. 3, the maximum difference
between the predictions of the model of McClung (1982,
1984) (given by [1] and [2]) and the finite element
calculations is 2%. This agreement is fortuitous because
deviations up to 6% have been found for other slope
angles (MeClung 1984).

For the data in Table 1, the stress ratio, o /[(pH +
p'H')Yg)], has a mean of 0.73 and a standard deviation
of 0.10. This implies & = 0.25 for the mean value for the
predictions of the model given by [2] and [4] and it
implies ¥ = 0.36 for Haefeli's model. The stress ratio
spans a range of 0.44 = &/[(pH + p'H')g)] = 0.85.
which implies a range of —0.05 = v = 0.33 for [2] and
[4] and 0.16 = v = 0.40 for Haefeli's model. Calcula-
tion of the implied value of v for each data point from the
measured stress ratio gives ¥ = 0.25 and a standard
deviation of 0.09 for the average value of v implied for
[2] and [4]; it also gives ¥ = 0.36 and a standard
deviation of 0.05 for Haefeli's model. If the lowest
value of the stress ratio is discarded as a statistical
outlier, the implied values of v for the estimated values
of the stress ratio are 0.11 = v = 0,33 for [2] and [4],
which is very close to the measured values for field and
laboratory experiments in the density range. Figure 4
shows the comparison of measured values of & versus
(pH + p'H'}g) and eqs. [2] and [4], finite element
calculations, and Haefeli’s model.

Of further interest with respect to the average pressure
estimates are the results of the regression analysis
reported by Larsen er al.' A regression analysis of the
data in Table 1 showed that

(8] & =0.77(pH + p’'H')(g) — 0.40kPa

with /2 = 0.89 and the standard deviation of the
residuals 1.1 kPa. This shows that & is linear with (pH +
p'H')(g) to a good approximation, and the small
intercept gives some added confidence in the data. The
regressicn line is shown in Fig. 4. This analysis should
not be extended beyond the current data set.
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FIG. 4. Average pressure & versus (pH + p'H')(g) for data
from Table 1. (O) estimates from ficld measurements; (---)
predictions of one-dimensional model with empirical correc-
tions; {—) finite clement calculations. Onc-dimensional model
and finite element calculations are shown for the limits v = 0.0
and v = 0.4. (- - ) regression line.

Data analyzed from similar mecasurements taken in
Switzerland during the winters between 1950 and 1956
are presented in the Appendix. These data were taken on
a slope with a near-constant incline of 377 {Salm 1977)
and little or no glide. The Swiss data also indicate that &
is approximately linear with (pH + p'H'Xg) as is
shown in the Appendix.

The one-dimensional models cannot be used to predict
the maximum value, o, of the pressurc distribution.
However, it is possible to calculate oy, by finite element
methods. Regression analysis of the data from Table 1
shows that o, is given by

9] om= L25(GH + p'H')g) — 1.25kPa

with 7 = 0.92 and the standard deviation of the
residuals 1.4 kPa (Larset et al.'). The implication is that
O is linear with respect to (pH + p'H')(g) to a good
approximation. From Table 1, the mean value of the
stress ratio o, /[(pH + p'H'Yg)] is 1.13, with a
standard deviation of 0.13. Finite element calculations
show that the ratio increases with v, and has a value of
0.87 for v = 0.25 and 1.13 for v = 0.40. This result
indicates that on the average the ratio exceeds predic-
tions for linear modelling by about 30%, if ¥ = 0.25 is
accepted as the mean value of v from the results of the
average pressure measurements,

Figure 5 depicts the relationship between o, and & for
the data as compared with finite element calculations. A

25

20

0 ! 1 | 1
] 5 10 15 20 25

F , kPa

FiG. 5. Values of o, versus & from the data and finite
element calculations. (O) measured data points; (—) finite
element calculations; (- - -) regression line.

regression analysis gives the result that
[10] o, =1.48F + 0.58kPa

with r* = 0.93 and the standard deviation of the
residuals 1.4 kPa. Finite element calculations actually
show that the stress ratio o, /& declines as v increases.
From Table 1, the mean value of o, /& is 1.55, with a
standard deviation of 0.18. For v = 0.25, which
represents the average implicd value of v for the data if a
linear viscous model is chosen, the finite element results
give a value of o,,,/G = 1.20. The ratio thus exceeds the
predictions for a linear material by about 30%.

Conclusions and discussion

From snow pressure measurements and analysis, the
following conclusions have been reached.

1. The average pressure appears to be adequately
explained by calculations assuming linear, viscous
modelling. In this regard, the one-dimensional model of
McClung (1982, 1984) with empirical corrections pro-
vides a formulation that agrees with field measurements
as well as with finite element calculations.

2. The implied average value of v is near 0.25 for the
present measurements of & when linear modelling is
assumed. This is a reasonable value for alpine snow
based upon experimental results in the density range of
300-500kg/m’.

3. The maximum and the average pressures are linear
with respect to (pH + p'H')(g); the maximum pressure
increases linearly with average pressure to a good
approximation. The values of o, from field measure-
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ments exceed predictions from linear modelling by
about 30%.

4. Data from Switzerland analyzed in the Appendix
give an implied average value of v near 0.00, which is
lower than measured values from other experiments for
this density range. Regression analysis of the data from
Switzerland shows that @ is approximately linear with
(pH + p'H')(g), in agrecement with the data from the
present study.

The implications of the results for maximum pressure
must be accepted with caution because the accuracy is
less than that for estimates of average pressure. If the
results are accepted as valid in a qualitative sense, this
feature of snow deformation implies nonlinear behaviour,
Previous calculations by McClung {1976) showed that
nonlinearity assumed by taking the effective shear and
bulk viscosity proportional to the bulk stress provided
relatively unchanged estimates of average pressure over
a linear model, whereas the ratio ¢,,,/G increased by
about 15% for an example with ¢ = 45° These
nonlinear examples were complicated by glide but they
seem to indicate qualitative agreement with the effects
seen in the present data.

It was pointed out previously (McClung 1982) that the
linear viscous model may be extended to the simplest
viscoplastic model by making v time dependent. It
seems clear from Fig. 5 that this would not be sufficient
to explain the present data. The finite element calcula-
tions in Fig. 5 show that the ratio ¢,,, /& would decline as
the snow densities and v increase. The data in Fig. §
seem to imply the opposite.

The most important result of this study with respect to
applications is that the average pressure appears to be
suitably described by the linecar model. Since the
one-dimensional model with empirical corrections pro-
vides a fairly accurate representation of the lincar
problem, a simple analytic method is available to predict
average pressures. In addition, although the maximum
pressure appears to exceed the predictions for a linear
material, it may be accounted for in design by the usual
engineering safety factors. The regression analysis for
the data presented shows (eq. [10]) that o, is about 1}
times the average pressure. The standard deviation of
the residuals (1.4kPa) used in connection with [9]
would allow estimates of @, to any chosen confidence
limit for the data presented. Study of more accurate
nonlinear viscoplastic models for snow deformation that
provide the descriptive features seen in the data may
permit prediction of the maximum pressure from a better
theoretical framework.
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Appendix

Data have been obtained from an observation site at the
Weissflujoch (altitude 2680 m) in eastern Switzerland.
The experiments have been described by Salm (1977)
from the original report of Kimmerli (1958). The
observation site has a configuration similar to that for the
data reported from Norway. The slope angle is a nearly
constant incline of 37° and measurements showed no
glide upslope from the structure, The mcasurcments
were taken from the centre section of an avalanche-
defence structure, where lateral edge effects would be
largely absent. The average snowpack densities ranged
from 220 to 520kg/m’.

There are two potentially important differences in the
data sets from Switzerland and Norway: (1) snowpack
properties and (2) measurement techniques. Without
further analysis, it is not possible to quantify the
differences in snowpack structure between these two
sites. Salm (1977) and Kiimmerli (1958) have described
how the loads were calculated from the deformation of
springs on each of the horizontal crossbeams. Kiimmerli
(1958) lists data for the total force on the structure for six
winters of observations. From these resultant forces, the
average pressure on the structure has been calculated
using [4] and [6]. Figure Al shows the comparison of
the predictions of finite element calculations and [1] and
[5] over the range of interest: 0 = v = 0.4 for | = 37°
analogous to Fig 3. In Fig. A2, the implied values of &
are plotted versus (pH + p'H')(g), similar to the com-
parison in Fig. 4 for the Norwegian data. From Fig. A2,
nearly half of the data points imply negative values of v.
For the 78 data points in Fig. A2, the average value of
o /[(pH + p'H’')(g)] is 0.58, with a standard deviation
of 0.12. This implies an average value of ¥ = 0.0 for the
finite element calculations, ¥ = —0.02 for [4], and ¥ =
0.10 for Haefeli's model (eq. [6]). Figure Al shows that
Haefeli’s model provides fairly accurate estimates of the
linear problem for § = 37°; this is fortuitous. The data
imply a stress ratio in the range 0.34 = & /[(pH +
p'H')(g)] = 0.86. This yields —0.50 = v = 0.26 for the
prediction of [4] and —0.38 = v = 0.31 for Haefeli’s
model.

A regression analysis was performed for the data
depicted in Fig. A2, This analysis gave the relation ¢ =
0.69(pH + p'H')g) — 1.05kPa with # = 0.82 and
standard deviation of the residuals 1.2 kPa. Power law
regression gave & = 0.36[(pH + p'H')()])" % with r?
= (.84 and the standard deviation of the residuals
approximately 1.2 kPa.
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FiG. Al. Stressratio @ /(pgH)y versus vforthe range 0= v =
0.4 for y = 37°. Predictions shown are (@—®@) finite element
calculations; (O—CO) one-dimensional model with empirical
corrections; and (- -{) Haefeli’s model.
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FiG. A2. Avcrage pressure & versus (pH + ' H')(g) for data
from Switzerland. (O) measurement points; (—} limits of
finite element calculations; and {---) one-dimensional model
for v = 0.0 and v = 0.4. These latter two predictions are
identical for v = 0.4.
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The following conclusions seem evident from this
data analysis.

1. The implied valucs of v and ¥ are too low when
compared with laboratory and field measurements for
the density range in question. The measurements imply
average pressures that are less than the value for a lincar
viscous material.

2. The regression analysis shows that & is approxi-
mately linear with (pH + p'H')(g). Although the
power law regression analysis shows a slightly better fit,
these results must be accepted with caution because the
actual values of & appear to be less than that implied by
the linear constitutive equation.



