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Abstract
In this paper, a simplified method for predicting rock mass resistance against tensile forces from rock anchors (anchor) is 
presented. The interaction of anchors and rock mass was investigated using three-dimensional discontinuous numerical mod-
elling. Several patterns of rock discontinuities were assumed in the numerical modelling while a single anchor is embedded 
in it. The numerical results show that the existence of a discontinuity set sub-parallel to the anchor significantly improves 
the rock mass resistance against the tensile force from the anchors. This phenomenon is due to the rock block interlocking 
at the sub-parallel discontinuity set. Rock block interlocking generates a zone of stress concentration inside the rock mass 
which has an arch shape (i.e., a pressure arch), resisting against the anchor's tensile force. The load-bearing capacity of the 
pressure arch plays a significant role in the resistance of the rock mass against the forces from the rock anchor. A voussoir 
beam analogy was utilised to study the load-bearing capacity of the pressure arch. A simplified analytical approach was 
developed to assess the load-bearing capacity of the voussoir beams. Then, it was used in combination with the weight of 
the mobilised rock mass by the anchor to assess the maximum anchoring resistance of the rock mass (anchoring capacity). 
The suggested method was calibrated by numerical modelling and relevant published pull-out test results. The technique 
developed in this paper shows the significance of rock block size, shear behaviour of rock discontinuities, Young's modulus 
of the rock mass, and uniaxial compressive and tensile strength of the intact rock in anchoring capacity of rock masses.

Highlights

• A theoretical framework is presented on how rock mass and rock anchors interact based on numerical modelling.
• An analytical method is developed to calculate the anchoring capacity of a rock mass which has at least one joint set 

sub-parallel to the anchor.
• The importance of the rock block size and the shear behaviour of rock discontinuities in determining the anchoring capac-

ity of the rock mass is discussed.

Keywords Rock anchors · Blocky rock · Pressure arch · Anchoring capacity · Tensile strength of intact rocks

1 Introduction

Rock anchors are implemented in different engineering prac-
tices such as anchoring hanging bridges, the foundations of 
wind turbines, foundations of high-voltage electricity masts, 
ski, and gondola masts. Rock anchors are used to transfer 

the tensile force deep into the rock mass. They might be 
designed to function as passive (not post-tensioned) or active 
(post-tensioned) anchors, while they can be a single anchor 
or act in a group. The current study focuses on the behaviour 
of a single passive rock anchor (hereafter "the anchor" for 
brevity).

According to Brown (2015), anchor design has not 
changed since the 1970s. The anchors are controlled against 
four modes of failure which include (Littlejohn and Bruce 
1975, 1976):
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– Mode A: tensile failure of steel materials
– Mode B: failure at the grout‒steel interface, which leads 

to a loose bond between streel and grout
– Mode C: failure at the rock‒grout interface which leads 

to a loose bond between grout and rock
– Mode D: rock mass uplift.

The ultimate tensile load of an anchor is the minimum of 
the tensile load which is obtained from the above-mentioned 
modes of failure. This paper is focused on failure mode D 
and how to estimate it for a specific type of rock mass. Here, 
the minimum tensile force from an anchor which can cause a 
mode D failure in the rock mass is denoted as the "anchoring 
capacity of the rock mass" or simply the anchoring capacity.

Design methods for assessing the failure modes A, B 
and C are summarised and discussed by Brown (2015) and 
Littlejohn and Bruce (1975, 1976). The traditional method 
for designing anchors against mode D failure is to assume 
that the tensile force of the anchor is resisted by the weight 
of the rock mass located inside an imaginary cone where 
the anchor is located at the axis of the cone—the so-called 
cone method. The apex of the cone can be located at either 
the anchor base or the middle of the bond length. The apex 
angle of the cone can vary between 60 and 90 degrees (Lit-
tlejohn and Bruce 1975, 1976). However, studies regarding 
the failure mode D are inadequate, limiting our understand-
ing regarding the interaction of the anchors and rock mass.

Saliman and Schaefer (1968) carried out four tests on 
anchors with a length of 1.52 m embedded in sedimentary 
rocks (mostly shale). In all the cases, the failure happened 
by uplift of rock blocks (failure mode D) and rock-grout 
interface (failure mode C). The cone shape of the failure 
for the uplifted rock mass was inferred from the pattern and 
orientation of the cracking, joint opening, and rock mass 
bulging on the ground surface. To obtain the shape of the 
cone, they used the radius of the bulged rock mass on the 
ground surface and calculated the apex angle for an idealised 
cone which has its apex point located in either the anchor 
base or the middle of the bond length. This led to obtain-
ing different apex angles for the cones: 62‒100 degrees and 
33‒62 degrees if the apex of the failure cone is located at the 
middle of the bond length and the anchor base, respectively.

Brown (1970) carried out several tests on anchors embed-
ded in laminated dolomite. It was not possible to identify the 
shape of the mass uplifted by the anchors. However, a large 
area at the ground surface was moved by the anchors. This 
was considered as an indication of the separation of the rock 
mass at the horizontal bedding planes.

Bruce (1976) carried out extensive tests on the anchors 
and managed to carry out at least seven tests where the 
anchors failed by mode D. The rock mass was laminated 
sandstone with two sets of sub-vertical joints which were 
perpendicular to each other. He used a similar approach to 

Saliman and Schaefer (1968) to calculate the volume of the 
failure cone. It led to an apex angle of 117‒144 degrees 
and 90–114 degrees, respectively, for the cone having its 
apex point at the middle of the bond length and the anchor 
base. Assuming the unit weight of 0.025 MN/m3 for the rock 
mass, the measured anchoring resistance was 14–56 and 
7–29 times the cone weight, if the apex point was located at 
the middle of the bond length and the anchor base, respec-
tively. Bruce (1976) reported that realistic estimation of the 
radius of the cone is not straightforward for the following 
reasons:

– In several tests, the shape of the disturbed area on the 
ground surface was more elliptical than circular. There-
fore, the mean value of the ellipsoid's radius is reported 
as the radius of the cone base.

– In certain cases, the assumed volume of the cone was 
exaggerated since the shape of the bulged area at the 
ground surface was a very narrow ellipsoid.

In addition, Bruce (1976) made an interesting observation 
that, in the anchors with mode D failure, there is a short-
length at the anchor base where a failure model B or C is 
observed. Therefore, the apex of the failure cone should not 
be located at the anchor base. Based on this observation 
from Bruce (1976), the more appropriate location for the 
cone's apex is above the anchor base where the mode C or 
D failure stops.

More recently, Thomas-Lepine (2014) carried out pull-
out tests on 50 rebars with embedded lengths of 0.5–1.5 m 
into the rock mass in a dolomite open pit mine in Norway. 
Among all the tests, only 21 showed failure mode D. He 
observed that among the bolts with the D-type failure, two 
different mechanisms are visible as follows:

– A pre-existing rock block liberated by the tensile force 
of the anchor: this type of failure happened when the 
anchors were embedded mainly inside a single rock 
block. The rock block was liberated from the host rock 
by the pull-out force.

– Cracking and disintegration of the rock mass in the vicin-
ity of the anchor: this failure happened when the rock 
mass consisted of smaller blocks. With increasing uplift 
force, the rock blocks interlock with each other and move 
upward. Finally, the interlocked blocks are failed, leading 
to the release of the anchors.

This observation shows the importance of the block size 
in the interaction mechanism of the rock mass and anchors.

Figure 1a depicts the ratio of the anchor pull-out force to 
the cone weight from the test data reported by Bruce (1976) 
and Thomas-Lepine (2014). The cone weight was calcu-
lated assuming an apex angle of 90 degrees with the apex 
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located at the anchor base; the rock mass has a unit weight 
of 2500 kg/m3. A best fitting line on the data was also pre-
sented. Note that the vertical axis is in logarithmic scale. As 
it is clear, the pull-out forces from the tests are larger than 
the cone weight. However, with increasing anchor length, 
the differences decrease.

To decrease the underestimation of the anchoring capac-
ity by the cone method, Wyllie (1999) suggested utilising the 
rock mass tensile strength calculated via the Hoek‒Brown 
criterion (Hoek 1983) acting at the surface of the cone when 
field tests are not available. To utilise the tensile resistance 
of the rock mass on the surface of the cone, it is required to 
have a correlation between the rock mass quality (for exam-
ple, the GSI value of the rock mass (Hoek et al. 2013)) and 
the anchoring capacity of the rock mass. To investigate this, 
Fig. 1b–d shows the anchoring capacity of the rock mass 
obtained by Thomas-Lepine (2014) from field tests versus 
the rock mass quality at the test location. The rock mass 
quality was assessed by the Q value (Barton et al. 1974), GSI 
(Hoek et al. 2013) and RQD (Deere 1964). The anchoring 
resistance of the rock mass was normalised to the anchor 
length since the anchors had different lengths. It is visible 
that there are no clear correlations between the traditional 
rock mass quality classes and the anchoring capacity of the 
rock mass. In spite of the fact that we only show a single 
dataset in Fig. 1b–d (from a dolomite rock mass), it is pos-
sible to conclude that finding any correlation between the 
known rock mass quality classes and the anchoring capacity 
of the rock mass is not straightforward and requires exten-
sive anchor pull-out tests on different rock masses.

The key challenge in the cone method is to find the cor-
rect apex angle. There is no agreement between authors 
regarding the apex angle and how geological structures 
might affect it. For example, Bruce (1977) suggests an apex 
angle of 60–90 degrees while Wyllie (1999) argues that the 
apex angle can be increased to 120 degrees in hard rocks. In 
addition, the apex angle changes if the apex point is located 
at the anchor base or at the middle of the bond length. In the 
traditional cone method, the apex angle of the cones as men-
tioned by several authors is associated with the rock mass 
structures and the main discrepancy arises in the question 
of which orientation of the geological structures leads to the 
most and least favourable condition regarding the anchor-
ing capacity of the rock mass. According to Wyllie (1999), 
the most and least favourable conditions are when the geo-
logical structures have a right angle with the anchor and are 
parallel to the anchor, respectively. However, Littlejohn and 
Bruce (1977) argued that the geological structures which 
have a right angle with the anchor have the most unfavour-
able effect on the anchoring capacity. Wyllie (1999) drew 
his conclusion by considering how the joint dip angle might 
contribute to the apex angle of the cone, while Littlejohn and 
Bruce’s (1977) conclusions were based on tests on laminated 

Fig. 1  Pull-out force obtained from the filed tests versus (a) anchor 
length, (b) Q-value, (c) GSI and (d) RQD. The data are from Bruce 
(1976) and Thomas-Lepine (2014)
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sedimentary rocks. To have a better understanding, the 
effect of the rock mass structures will be investigated by the 
numerical modelling in this manuscript (Sect. 2).

Dados (1984) studied the rock mass and anchor inter-
action in a granitic rock mass with horizontal and vertical 
joints. Through comparing the field observations and physi-
cal modelling in the laboratory, he developed a technique to 
assess the rock mass anchoring capacity. He showed that in 
this kind of rock mass, the radius of the bulged rock mass 
area in the ground surface is approximately equal to the 
anchor length. As soon as the uplift force is applied, the 
rock blocks detach at the horizontal joints, and the vertical 
joints are opening in the upper part while they are closing 
in the lower part. He observed that rock block interlocking 
generates a continuous plate subjected to a concentrated sin-
gle load in the middle. Using the bending versus deflection 
relationship for a continuous plate, he suggested a formula to 
calculate the anchoring capacity of the rock mass. Through 
the field testing of anchors, he suggested a relationship to 
adjust the intact rock's Young's modulus to implement it 
into the calculations based on the RQD and anchor length.

Serrano and Olalla (1999) utilised the Hoek–Brown fail-
ure criterion (Hoek and Brown 1980) to identify rupture sur-
face around an anchor under tensile loading when the failure 
is limited only to mode D. The rupture surface is a locus of 
points around an anchor where the rock mass has the lowest 
strength against the tensile load of the anchor. According 
to the analysis, depending on the slenderness ratio (diam-
eter to length ratio) of the anchor and the rock mass qual-
ity (defined by a factor which depends on the Hoek–Brown 
parameters of the rock masses) two different types of the 
rupture surfaces might be observed, denoted as short and 
long anchor behaviour in the article. For the short anchors, 
the rupture surface has a hyperbolic shape with starting point 
at the anchor base. The long anchors have complex rupture 
surface, a hyperbolic shaped cone is limited to the upper part 
(similar to the short anchor) but a cylindrical rupture surface 
in the lower part. For the rock anchors which are the main 
focus of the current paper, the long anchor approach is valid 
(they always have length to diameter ration over 25), and 
according to the developed method by Serrano and Olalla 
(1999) the anchoring capacity of the rock mass can be esti-
mated as the shear resistance of the rock mass at the wall of 
the borehole. This approach, however, is limited only to the 
rock masses at which the Hoek–Brown failure criterion is 
applicable (homogenous and isotropic rock mass) meaning 
that either the rock blocks are much larger than the anchor 
length, or the rock blocks are extremely smaller than the 
anchor. For practical anchor length in the industry (typi-
cally 3–10 m), this implies rock masses comprised mostly 
of blocks smaller than 10 cm or larger than 9–30 m which 
are rarely encountered in the construction sites in hard rocks.

Because of the challenges in simulating rock mass-anchor 
interaction in the laboratory or performing controlled field 
tests, numerical modelling is an attractive feasible alter-
native. Panton (2016) carried out an extensive numerical 
analysis to find the most appropriate numerical approach for 
simulating rock mass-anchor interaction. He noticed that a 
continuous numerical approach does not lead to acceptable 
results. In continuous models, the major part of the anchor 
fails by the debonding of the anchor, except at a portion 
of the anchor base. Later, with increasing pull-out force, a 
tensile failure zone develops at the anchor base, propagating 
in a cone shape towards the ground surface. This contra-
dicts the observations in the field tests, where the rock mass 
uplifting and failure starts from the ground surface (e.g., 
Bruce 1976). With increasing pull-out force, the anchor load 
sinks further down towards the base, while at the same time 
the volume of the rock mass being uplifted by the anchor 
increases.

Panton (2016) showed that implementing rock joints 
explicitly in the analysis can help to study anchor and rock 
mass interaction, especially when the rock mass disconti-
nuity system is simulated by a Discrete Fracture Network 
system (DFN) (Dershowitz 1984). The study shows that a 
rock mass with sub-vertical and sub-horizontal joints has 
a slightly higher anchoring capacity than a rock mass with 
inclined joints. Decreasing the fracture intensity (number of 
fractures per unit volume of rock mass) improves slightly the 
rock mass anchoring capacity. He also showed that, when 
considering the rock joint persistence, it is possible to cal-
culate the maximum fully removable rock block using the 
statistical approaches of DFN. His numerical models show 
that the calculated volume of the removable blocks is con-
servative enough to represent the anchoring capacity of the 
rock mass.

Discontinuous numerical modelling can be a suitable tool 
to study rock mass-anchor interaction, as demonstrated by 
Panton (2016). However, it takes a lot of time to carry out 
site investigations to get the required inputs and conduct the 
modelling itself. In addition, in a very complex numerical 
model, it will be difficult to judge the significance of the 
numerical outcomes; for example, studying the relevance of 
the different rock mass properties on the anchoring capacity. 
Moreover, most of the time rock engineers are dealing with 
selecting a proper site for rock mass anchoring in the early 
phases of the design. Since we lack the fundamental knowl-
edge of the anchors and rock mass interactions in different 
rock masses, conducting such a job can be quite challenging.

Hence, it is required first to understand fundamentally 
the rock mass and anchor interactions in a simple manner. 
Also, such a simple technique might help in smaller projects 
to calculate the ground anchoring capacity with an accept-
able factor of safety, avoiding the conservative technique of 
the cone method (without utilising numerical modelling). 
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Moreover, it might pave the way towards having a better 
understanding of rock mass and anchor interaction, helping 
in the earlier phases of projects to select appropriate sites for 
rock mass anchoring.

To this end, this paper focuses on investigating the inter-
action mechanism between fully bonded anchors and rock 
masses through three-dimensional discontinuous numeri-
cal modelling. The study is limited to type D failure mode 
of a single anchor, while considering different orientations 
and conditions for rock discontinuities in the models. The 
numerical results demonstrate that when the rock mass forms 
sub-parallel joints with the anchor, the rock blocks interlock 
with each other under the tensile force of the anchor, and 
create a zone of high stress concentration, known as a pres-
sure arch. In such a condition, the load-carrying capacity 
of the pressure arches will control the anchoring capacity 
of the rock mass. The paper continues to develop an ana-
lytical approach to assess the anchoring capacity of rock 
masses based on the load-bearing capacity of the pressure 
arches and the distribution of rock blocks along the anchor. 
The developed method is calibrated against the numerical 
models and published field tests. Additionally, a discussion 
is presented about the correlation of the outcomes from this 
research work with the current state-of-the-art in anchor 
design and its limitations.

2  Interaction of Rock Mass and Anchors—
Numerical Modelling

Three-dimensional (3D) numerical modelling was car-
ried out with considering explicitly the rock discontinui-
ties by 3DEC code (Itasca 2016 and 2019 versions: 5.2 
and 7.0). The scope of the numerical modelling is lim-
ited to investigate the interaction between fully grouted 
anchors with blocky rock masses. A range of the proper-
ties were assumed for the rock masses which are gener-
ally encountered in the Scandinavian shield, hard blocky 
rock masses. For the sake of simplicity, the rock mass 
always has 3 joint sets with dip/dip directions as presented 
in Table 1, divided into four different rock mass classes 
according to the dip and dip-direction of the joint sets. 
Properties of intact rock and rock joints are summarised 
in Table 1. The anchors were modelled as cable elements 
and their mechanical properties are provided in Table 2. 
Rock anchors with lengths of 2, 4 and 5 m are modelled 
for each class of rock masses.

Table 1  Rock mass properties of the numerical models*

*Kn is normal stiffness of the joints, Ks shear stiffness of the joints, E Youngs's modulus and v Poisson's ratio. The values are reported in this 
table are corresponding to hard granitic rocks of Scandinavian shield. Particularly joint normal and shear stiffness are corresponding to fresh 
rock joint surfaces with JRC = 10 and JCS = 100 MPa which are calculated utilising Bandis et al. (1983)

Rock mass Joints dip/Dip-
direction (°)

Joint spacing (m) Relevant rock block shape Joint 
stiffness 
(GPa/m)

Friction angle of 
joints (°)

Dilation angle of 
joints (°)

Intact rock 
properties

E (GPa) v
Kn Ks

Class
90–90–00

90/000 0.2 to 2 40 4 20, 30, 35 0, 2, 10 15 0.2
90/270
00/000

Class
90–60–00

90/270 0.2 to 2 40 4 20, 30, 35 0, 2, 10 15 0.2
60/000
00/000

Class
90–30–00

30/270 0.2 to 2 40 4 20, 30, 35 0, 2, 10 15 0.2
90/000
00/000

Class
60–45–35

60/180 0.2 to 2 40 4 20, 30, 35 0, 2, 10 15 0.2
35/315
45/100

Table 2  Mechanical properties of the cable elements used in the 
numerical modelling

Cable ele-
ment per m 
of anchor

Bond 
stiffness of 
anchor (GN/
m2)

Bond 
strength 
of anchor 
(MN/m)

Anchor 
diameter 
(mm)

Hole 
diameter 
(mm)

20 10.18 1 48 89
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To ensure that the failure of the anchoring system is only 
dominated by the rock mass failure (failure mode D), suf-
ficiently high values of bond shear resistances between steel, 
grout and rock and the yield strength of the anchor were 
assumed.

The rock mass is consolidated under its own weight and 
all the vertical boundaries of the model are constrained in 
the normal direction (Fig. 2a). The base of the model is 
constrained in the vertical and all horizontal directions. 
Therefore, the horizontal stresses are generated due to the 
Poisson's effect, leading to equal horizontal stresses in the x 
and y directions in the model.

After running the model to initial equilibrium, a constant 
velocity was applied to the top of the anchor in the vertical 
direction, pulling the anchor upward. The anchor load and 
displacement, stresses within the rock blocks and their dis-
placements were monitored during pull-out of the anchor. 
Figure 2b shows the location of the monitoring points in 
the model, placed in an organised pattern with a distance of 
1 m from each other; they are extended 5 m in both the X 
and Y directions.

The rock blocks are assumed to obey elastic behaviour, 
while the rock joints have only frictional resistance. It 

was assumed that the uniaxial compressive strength of the 
intact rock is 100 MPa. Considering the scale effect on the 
strength of the rock blocks, modelling was stopped when 
the maximum principal stress near the anchor reached 
50 MPa (50% of the uniaxial compressive strength of the 
intact rock according to the observation by Martin (1997)). 
This means that the rock block has failed in compression 
mode. This assumption might be conservative since we are 
ignoring the effect of the confining stresses. However, as 
it will be demonstrated later, when the rock blocks inter-
lock by the anchor force the stress state becomes uniaxial 
and the stresses in the other directions are neglectable. 
Similarly, it was assumed that uniaxial tensile strength of 
the intact rock is − 4 MPa. In the models if the minimum 
principal stress reaches − 4 MPa in the rock blocks at the 
vicinity of the anchor, the model was stopped.

Figure 3a–c show the pull-out force versus the anchor 
top displacement (which is approximately equal to the ver-
tical displacement of the rock block located exactly at the 
anchor top in the ground surface) for the models with joint 
spacing 0.5 m, joint friction angle 30 degrees and joint 
dilation angle of 2 degrees. Two different failure mech-
anisms were observed in the models. Models with rock 
mass classes of 60–45–35 were failed by the rock joint 
shearing and uplifting of the rock blocks by the anchor. 
Since the shearing in the joints is governed by elastic-per-
fect plastic behaviour, the anchor load is standing almost 
constant after failure while the displacement increases. In 
all other models, i.e. with rock mass classes of 90–90–00, 
90–60–00 and 90–30–00, the anchoring system was failed 
by the tensile failure of the rock blocks hosting the anchor 
(tensile failure mechanism). These models show approxi-
mately linear behaviour with increasing pull-out force, 
up until the model's cycle was stopped due to the tensile 
failure in a rock block at the vicinity of the anchor base.

As shown in Fig. 3d, the anchoring capacity is depend-
ent significantly on the rock joints' dip angles (see the 
rock mass classes in Table 1), and the anchor length. The 
rock mass class 90–90–00, containing two vertical joint 
sets, has the highest anchoring capacity (Fig. 3d), regard-
less of the anchor length. The rock masses with one sub-
vertical joint set (classes 90–60–00 and 90–30–00) have a 
lower anchoring capacity than class 90–90–00. Between 
the classes 90–60–00 and 90–30–00 which have only one 
vertical joint set, class 90–30–00 has a higher anchoring 
capacity, which contains an inclined joint set of 30 degrees 
in dip compared to the 60 degrees inclined joint in rock 
mass class 90–60–00. This means that between the rock 
mass classes 90–60–00 and 90–30–00, the one which has 
a less inclined joint set has a smaller anchoring capacity. 
Rock mass class 60–45–35 shows slightly higher anchor-
ing capacity compared to class 90–60–00 but less than 
rock mass class 90–30–00.

(a)
A

A

Monitoring points
Anchor

(b)
A A

1 m

1 m

Fig. 2  (a) Geometry of the models in 3DEC and (b) cross-section 
A-A showing the location of the monitoring points
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Based on the traditional method of the cone weight (as 
described in Sect. 1), the anchoring capacity of the modelled 
rock classes should follow the dip angle of the rock joints. 
Considering the recommendations from Wyllie (1999), 
the anchoring capacity of the modelled rock mass classes 
should follow this order from the lowest anchoring capacity 
to the highest: class 90–90–00, 90–60–00, 90–30–00 and 
60–45–35. However, numerical modelling shows that the 
anchoring capacity follows the following order from lowest 
to highest: 90–60–00, 60–45–35, 90–30–00 and 90–90–00 
(Fig. 3d). The numerical results show that rock masses 
which have rock discontinuity sets parallel to the anchor 
have the highest anchoring capacity, contradicting the 
hypothesis from the cone method. The reason for such dis-
crepancy is that the rock block interlocking effect is ignored 
in the cone method.

Interlocking of the rock blocks under the uplift force of 
an anchor happens in the rock mass with joints which are 
sub-parallel to the anchor (referred to as sub-vertical in this 
paper since the installed anchors are vertical) in the rock 
mass classes 90–90–00, 90–60–00 and 90–30–00.

If an anchor is embedded inside a rock block, the ten-
sile load of the anchor pushes the block to move upward. If 
the block does not slide along the sub-vertical joints, it will 
rotate the two adjacent rock blocks outward from the anchor 
(Fig. 4a). The rotation causes the neighbouring blocks to 
interlock with each other, a mechanism first observed by 
Dados (1984) in physical modelling of rock anchoring in the 
laboratory. Block interlocking generates a zone of high com-
pressive horizontal stress concentration with an arch shaped 
line of the thrust (i.e., a pressure arch). The arch shape of 
the thrust line makes the generated horizontal forces in two 
different sides of the rock blocks (Fh) to be offset by a dis-
tance z, generating a moment which resists the anchor force. 
Below we present that numerical modelling shows a similar 
rock block interlocking mechanism in the rock masses with 
sub-vertical joints under anchor pull-out (rock mass classes 
90–90–00, 90–60–00 and 90–30–00).

Figure 4b shows the horizontal displacement of rock mass 
class 90–30–00 with the anchor length of 4 m at pull-out 
forces of 0.5 MN. In the two most upper rows of blocks a 
spatial pattern of the horizontal displacements can be seen: 
fluctuations in the horizontal displacement along rock blocks 
parallel with the anchor. Inside each of these blocks the hori-
zontal displacement in two different directions is observed, 
indicating that the blocks have the tendency to rotate out 
from the block uplifted by the anchor force, causing them 
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Fig. 3  Pull-out force versus anchor displacement for different anchor 
length: (a) 2 m, (b) 4 m, (c) 5 m. (d) Anchoring capacity of different 
rock mass classes obtained by numerical models. In all the presented 
results, the rock joints have spacing of 0.5  m, friction and dilation 
angle of 30 and 2°, respectively
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to interlock. Figure 4b, c shows the generated horizontal 
pressure arch. The thrust line of the pressure arch is also 
highlighted in Fig. 4d, which represents the location of the 
total force generated inside the pressure arch with horizontal 
projection of Fh.

It should be noted that all the rock mass classes for which 
rock block interlocking occurred failed under the anchor 
load by tensile failure mechanism. However, in the rock 
mass classes with no block interlocking effect, the rock mass 
failed by shearing along the blocks and uplifting of them.

Figure 4 is an example showing how the anchor load is 
transferred to a rock mass containing a joint set which is 
sub-parallel with the anchor. Similar behaviour was also 
observed in the rock mass classes 90–90–00, 90–60–00 and 
90–30–00 for anchor lengths of 2, 4 and 5 m. To investigate 
the interlocking effect in more detail, relevant rock mass 
properties including rock block size, friction and dilation 
angle of the rock joints were considered in series of sen-
sitivity analysis. Figure 5 shows sensitivity analysis over 

anchoring capacity of different rock mass classes when an 
anchor with length of 4 m was installed.

Figure 5a shows that when there is no dilation within 
rock joints the anchoring capacity follows the hypothesis by 
Wyllie (1999) where it is only associated with the weight of 
the blocks hanging from the anchor and no block interlock-
ing is happening. However, with a dilation angle as small as 
approximately 2 degrees, rock block interlocking happens, 
thereby significantly improving the anchoring capacity of the 
rock mass. However, further increasing of the dilation angle 
up to 10 degrees does not improve the anchoring capacity 
significantly, as the failure is mostly controlled by the ten-
sile strength of rock blocks. Similarly, Fig. 5b shows that 
increasing the friction angle does not improve the anchoring 
capacity in rock classes with interlocking effect. However, 
in the rock mass class 60–45–35 where the failure mech-
anism is rock block sliding, increasing the friction angle 
improves anchoring capacity. In rock mass class 60–45–35, 
since the confining stresses over the sliding joints is low, the 

Fig. 4  (a) The interlocking 
mechanism of rock block under 
the tensile forces from an 
anchor when the rock mass has 
sub-parallel discontinuities with 
the anchor. A vertical cross-
section parallel with X-axis in 
the middle of the numerical 
model with rock mass class 
90-30-00 and anchor length of 
4 m showing: (b) horizontal dis-
placement, (c) horizontal stress 
distribution in the cross-section 
and (d) formation of the pres-
sure due to block rotation and 
interlocking. The compressive 
stresses are shown as negative 
values
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improvement in anchoring capacity due to increase in the 
friction angle has diminishing returns.

Figure 5a, b reveals that the anchoring capacity in rock 
mass classes that exhibit the interlocking effect is not sen-
sitive to the frictional resistance of the rock joints, while 
a very small amount of dilation in rock joints is required 
to utilise the block interlocking effect. In rock mass class 

60–45–35 where the rock mass fails by the block sliding 
and uplifting, both friction and dilation angles improves the 
anchoring capacity.

Figure 5c shows that when the joint spacing is equal 
0.2 m, the anchoring capacity is almost equal in all the 
rock masses, indicating that interlocking does not improve 
the rock mass anchoring capacity. However, with increas-
ing rock block size (joint spacing), the anchoring capac-
ity improves in rock classes of 90–90–00, 90–60–00 and 
90–30–00, with the rock class 90–30–00 showing the larg-
est improvement rate. In the rock class 60–45–35 at which 
the anchoring capacity is controlled by the shearing along 
the joints, increasing the block size improves the anchor-
ing capacity but rate of the improvement is less than other 
classes with block interlocking effect.

Figure 5a–c shows that block size and dilation angle are 
the most important factors in controlling anchoring capacity 
of the rock mass in comparison to the friction angle.

The classical cone model assumes that the involved rock 
around an anchor has a conical shape. However, numerical 
modelling is suggestive of a rather frustum geometry: a cone 
where it is cut by a plane parallel with the ground surface at 
the anchor base, but the apex point of the cone is in a point 
far deeper than anchor base. The horizontal cross-section 
of the frustum at the anchor base is shown in Fig. 6a–d 
(denoted as base plate) consisting of rows of interlocked 
rock blocks. In rock mass class 90–90–00 where the rock 
blocks are cubical, interlocking happens in both directions, 
forming a circular shaped base plate. However, in rock mass 
class 90–60–00 and 90–30–00 the base plate's shape is half 
elliptical where largest diameter of the ellipsoid is along the 
interlocking direction. In rock mass class 60–45–35 where 
rock block interlocking does not happen, the base plate has 
a triangular shape. The number of the interlocked rock block 
rows in the anchor base is associated with the anchor length 
to joint spacing ratio regardless of the friction and dilation 
angles (Fig. 6e, note that several points are located on top of 
each other in this graph).

The change in the anchor load inside a rock block is equal 
to the tensile load transferred to that block by the anchor. 
Figure 7 shows the anchor load transferred to the rock blocks 
for different rock mass classes along a 4 m long anchor. As 
it is visible, in rock mass class 90–90–00 the anchor load 
is almost evenly transferred into the rock blocks along the 
anchor while in rest of the classes, the largest anchor load is 
transferred to the rock block located around the anchor base. 
Rock mass classes of 90–90–00, 90–60–00 and 90–30–00 
were failed by tensile failure of the rock block at the 
anchor base under anchor pull-out force. In rock mass class 
90–90–00 almost all the blocks at which the anchor passed 
through showed tensile failure simultaneously. In conclu-
sion, in the rock classes with interlocking if the generated 
pressure arch exhibits sufficient load bearing capacity, the 
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Fig. 5  Sensitivity analysis with numerical modelling of an anchor 
with 4 m length: (a) anchoring capacity versus dilation angle while 
friction angle is 30° and joint spacing is 0.5 m, (b) anchoring capac-
ity versus friction angle while the dilation is 2° and (c) anchoring 
capacity versus joint spacing while friction angle and dilation angle 
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anchoring capacity will be directly governed by the tensile 
strength of the rock blocks and the cross-section of the block 
in direction perpendicular to the anchor where the tensile 
failure develops. In this condition, the tensile failure of the 
rock blocks at the anchor base will liberate the anchor base 
and hence the loading in the upper proration of the anchor 
will increase dramatically, leading to the mode D of anchor 
failure. As observed in the field tests by Thomas-Lepine 
(2012) in several tests the rock mass shows sudden cracking 
and disintegration of the rock blocks in the vicinity of the 
anchors.

As demonstrated by the numerical studies above, the 
kay issue in assessing the anchoring capacity of the rock 
masses with the block interlocking effect is estimating the 

load bearing capacity of the pressure arch formed in the 
anchor base in comparison to the tensile strength of the rock 
blocks. The stability and load bearing capacity of the pres-
sure arches has been studied by the voussoir beam theory 
in rock engineering. The load bearing capacity of the vous-
soir beams has been investigated by numerical modelling 
and physical modelling in the laboratory, as well as several 
analytical methods (e.g. Brady and Brown 1985; Sofianos 
1996; Diederich and Kaiser 1999; Sofianos and Kaipeni 
1998; Talesnick et al. 2007; Tsesarsky 2012; Shabanimash-
cool and Li 2015; Paraskevi and Sofianos 2018).

This paper proposes a simplified version of the analytical 
method developed by Shabanimashcool and Li (2015) for 
studying the load bearing capacity of the pressure arches 

Fig. 6  Horizontal cross-sections 
in the base of the numerical 
model with anchor length of 
4 m showing vertical displace-
ment of the rock blocks, from 
red to ward blue colour the 
displacements decrease. The 
directions where rock blocks 
are interlocked are shown and 
formed parallel rock pressure 
arches which are uplifted by 
the anchor force is also marked. 
(a) shows the cross-section for 
rock mass class 90–90–00, (b) 
rock mass class 90–60–00, (c) 
rock mass class 90–30–00, (d) 
rock mass class 60–45–35 and 
(e) presents the results from all 
the numerical models run in this 
manuscript which was showing 
rock block interlocking which 
includes the number of formed 
parallel pressure arches versus 
the anchor length to joint spac-
ing rations. It should be noted 
that several points are matching 
on top of each other
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(Appendix 1) and also demonstrates how the simplified 
method for the voussoir beam analysis in combination with 
the tensile strength of the rock blocks can be used to find out 
anchoring resistance along an anchor (Appendix 2). This 
methodology is used in Sect. 3 to assess anchoring capacity 
of a rock mass which was calibrated by numerical results and 
published field test data.

3  Anchoring Capacity of Rock Mass

This section first discusses the theory of anchor–rock mass 
interaction. An analytical approach is presented which can 
be utilised to obtain the anchoring capacity of a rock mass 
containing sub-parallel joint sets with the anchor.

3.1  Rock Mass and Anchor Interaction

When an anchor is subjected to uplift force, shear stresses 
develop in the contact of the anchor and grout as well as 
the grout and rock. The shear stress has its peak value at 
the location of the anchor top, and it decreases exponen-
tially with distance along the anchor (Farmer 1975; Li 
2018). Therefore, if there is no failure (modes A to D) in the 
anchor‒rock mass system, the tensile force from the anchor 
is transferred into the rock mass at a short distance along 
the anchor.

Figure 8 shows schematically, the axial anchor force 
and the shear stress distribution at the anchor‒grout and 
grout–rock contacts according to the analogy developed 
by Farmer (1975) and Li and Stillborg (1999). Initially, 
the anchor pull-out load is  P1 which leads to exponentially 
descending axial load along the anchor and shear stress 
distribution in the contact of steel-grout or grout–rock 
(brown line in Fig. 8a, b). With increasing the pull-out 

force gradually to  P2 (blue line in Fig. 8a) the shear stress 
at either the steel‒grout or the grout‒rock contact (which-
ever has the lower shear resistance) can reach its maximum 
value (τm) and then fail. Therefore, the anchor debonds 
from the grout or rock and the shear stress at the contact 
decreases to a residual value. The residual shear strength is 
constant along the debonded stretch of the anchor (Fig. 8a, 
b). The axial anchor force decreases linearly along the 
debonded length. A zone along the anchor where the shear 
strength is mobilised is denoted as the active length in 
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Fig. 8  Interaction of anchor and rock mass: (a) distribution of the ten-
sile axial force along the anchor, (b) distribution of the shear stress 
at either anchor–grout or grout–rock contacts along the anchor length 
and (c) comparing anchor tensile load and anchoring resistance of 
rock mass. Blue line shows the condition at which the anchor pull-out 
force is  P1. With increasing the pull-out force from  P1 to  P2 a zone 
along the anchor debonds from the grout as the anchoring resistance 
of the rock mass is larger than the anchor load transferred into the 
block (for example ΔRi ≥ ΔPi)
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the figure. The active length increases with increasing the 
anchor pull-out force.

Figure  8c compares the anchoring resistance of the 
rock mass to the pull-out force of the anchor. Assume that 
between the anchor length of l1 and l2 there is a rock block 
i which the anchor is interacting with. The load which is 
transferred from the anchor to the block i is ΔPi =  Pl1 - 
 Pl2. In Fig. 8c the anchoring resistance of the rock mass 
is shown by R. The anchoring resistance of the rock mass 
at the location of block i is denoted as ΔRi. If ΔRi > ΔPi, 
then the maximum load that can be transferred to block i is 
controlled by the shear resistance of the grout‒anchor and 
grout‒rock contacts or the tensile strength of the anchor 
steel. If ΔRi < ΔPi, then the rock mass can fail. Therefore, 
the anchor load between the length of  l1 and  l2 can never 
exceed  Rl2. This phenomenon can happen particularly at 
the shallow part of the anchor where anchoring resistance 
of the rock mass is low. As a result, the load distribution 
along the anchor will not follow the theoretical exponential 
assumptions.

Consider that an anchor with length of L is embedded 
vertically inside a rock mass, passing through N blocks. The 
anchoring capacity of the rock mass for this condition is 
determined by the cumulative anchoring resistance of the N 
rock blocks as follows:

where R(li) is the anchoring resistance at the location of 
block i which is located at the depth of li. A similar approach 
was used by Serrano and Olalla (1999) in which the anchor-
ing resistance of the rock mass is obtained by integration of 
the rock mass strength along a rupture surface developed 
due to the tensile force of anchor. If the rock mass has the 
potential for block interlocking (containing at least one joint 
set sub-parallel with the anchor, as demonstrated in Sect. 2), 
then R(li) depends on the load-bearing capacity of the pres-
sure arch formed due to rock block interlocking, the weight 
of the rock mass located above the pressure arch, and the 
tensile strength of the rock blocks:

where W(li) is the weight of the rock blocks that are mobi-
lised by the pressure arch (located above the pressure arch) 
and pushed upwards by it (Fig. 9a), Rint (li) is the load-bear-
ing capacity of the pressure arch formed at the depth of li 
(which will be investigated by the voussoir beam theory) 
and Rtens(li) is the tensile resistance of the block i against 
the anchor load. Appendix 1 presents a simplified analyti-
cal method to calculate the load bearing capacity of the 
pressure arch. Appendix 2 gives an analytical approach for 
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calculating the tensile resistance of the rock blocks against 
anchor load; the procedure for determining R(li) is also pre-
sented in Appendix 2.

Experimental results show that the volume of the rock 
mass mobilised by an anchor has the approximate shape of 
a cone (Salim and Schaefer 1968; Brown 1970; Bruce 1978). 
Moreover, numerical results in Sect. 2 show that the mobi-
lised rock mass by an anchor has a conical frustum shape. 
Therefore, the span of the pressure arches forming along the 
anchor should decrease in depth towards the anchor base.

As mentioned above, the load-bearing capacity of the 
pressure arches can be assessed by the voussoir beam 
analogy. The load-bearing capacity of the voussoir beams 
increases with decreasing span (e.g. Brady and Brown 1985; 
Sofianos 1996; Diederichs and Kaiser 1999). Therefore, the 
load-bearing capacity of the voussoir beams (or the pressure 
arches) formed along an anchor increases with depth, since 
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Fig. 9  Block interlocking effect on the anchoring resistance of rock 
mass: (a) formed voussoir beam and weight of rock mass mobilised 
by it at depth of li, and (b) location of possible deepest voussoir beam 
that can be used to calculate the anchoring resistance of the rock 
mass. According to the numerical models, the span of the formed 
deepest pressure arch is less or equal to the anchor length
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their span decreases. Hence, the deepest possible pressure 
arch formed close to the anchor base has the largest load-
bearing capacity among all the pressure arches formed along 
the anchor. Moreover, our numerical modelling in Sect. 2 
shows that the largest load is transferred to the rock mass 
close to the anchor base where the last pressure arch along 
the anchor is formed (Fig. 7). In other words, R(lN) is the 
maximum of all R(li) for i = 1, 2, 3 …N, where i = 1 cor-
responds to the first block at the anchor top and i = N repre-
sents the last block where anchor will load.

If there is no failure in the anchor–rock mass system 
(none of the failure modes of A, B, C and D happen), the 
anchor load and the shear stress distribution at the contact 
of the anchor-grout and grout-rock mass is exponential (see 
Farmer 1975; Li and Stillborg 1999). However, if the rock 
mass anchoring resistance is lower than the anchor load, 
the main part of the anchor load will be concentrated at the 
location of the deepest formed pressure arch (as numerical 
modelling also shows that, see Fig. 7) which has largest load 
bearing capacity compared to other pressure arches formed 
above it. In this condition, it can be assumed that the load 
transferred to the rock blocks along the anchor follows an 
exponential curve. However, the peak load which is trans-
ferred into the rock blocks is at the location of the deepest 
formed pressure arch (Fig. 9b):

where k is the exponentially decreasing coefficient of the 
loads transferred into the rock blocks along the anchor. If 
we assume that the anchor load transferred to rock block 
number 1 located at the anchor collar is R(l1), then k can be 
approximated as follows:

In Sect. 5.3.3 we will show that k ≈ 1 1/m according to 
the numerical results. Then, the anchoring capacity of the 
rock mass considering Eqs. (1) and (3) can be obtained as 
follows:

In the rock masses with two sub-parallel joint sets to the 
anchor (rock mass class 90–90-00 in the numerical models 
in Sect. 2), the anchoring capacity can be similarly calcu-
lated as the sum of the loads transferred to the rock blocks 
along the anchor. In this type of rock masses, the load trans-
ferred into the rock blocks along the anchor is almost con-
stant and approximately equal to R(lN) all along the anchor 
(see Fig. 7). Hence

(3)R(li) = R(lN)e
−k(lN−li),

(4)k ≅ −
ln
(

R(l1)
R(lN )

)

lN − l
1

(5a)Rult =

N∑
i=1

R
(
lN
)
e−k(lN−li)

Field tests by Bruce (1976) showed that when the failure 
mode D happens, there is always a small portion of anchor 
at the base which fails by either mode B or C (sliding along 
the grout-steel or grout-rock contact). If the anchor length is 
L and the portion of the anchor which failed by modes either 
B or C is equal to lshear, the deepest pressure arch along the 
anchor which carries the largest portion of the load should 
be located at the depth of L – lshear (see Fig. 9b). There are 
some involved methods to calculate lshear based on anchor 
diameter, borehole diameter, stiffnesses of the rock mass and 
the grout (e.g., Farmer 1975; Li 2018). According to Farmer 
(1975), in a fully bonded rock bolt, if no debonding and 
failure in the rock mass happen, the bolt load is distributed 
in a stretch of approximately 25d where d is the diameter of 
the bolt. Therefore, in this study we assumed the following:

To obtain the load bearing capacity of the pressure arches 
with the voussoir beam analogy, it is required to make 
assumptions about the span of the deepest formed pressure 
arch along block N (SN) and the pressure arch formed along 
block number 1 (S1).

Generally, the interlocking of only two neighbouring 
blocks is sufficient for a pressure arch forming. However, 
there is the possibility that the anchor passes through a 
rock block itself. Therefore, two neighbouring blocks of the 
anchor will also be interlocked with it to form a voussoir 
beam. In conclusion, the span of the interlocked blocks at the 
anchor base (deepest formed voussoir beam) always contains 
at least 2 to 3 blocks. However, assessing the largest possible 
span of the deepest voussoir beam is not straightforward. 
Based on laboratory tests, Daidos (1984) showed that the 
radius of the bulged area at the ground surface is approxi-
mately equal to the anchor length when the rock mass con-
tains two discontinuity sets which are sub-parallel with the 
anchor. Hence, assuming the worst-case scenario of θ = 90 
degrees in Fig. 9, the largest span of the voussoir beam 
formed at the anchor base is always equal to or less than 
twice the anchor length. Numerical modelling presented in 
Sect. 2 showed that the span of the pressure arch formed 
in the anchor base is always shorter or equal to the anchor 
length. Hence, in this study we assumed that the span of 
the formed pressure arch in the anchor base is equal to the 
anchor length.

As it is presented in Appendix 1, to form a voussoir beam 
which does not fail by shearing between the rock blocks, the 
voussoir beam should have a span which is equal or larger 
than 2–3 times of the beam thickness (see Eq. (33)). The 
voussoir beam thickness is equal to the spacing of the sub-
horizontal joints (Sh in Fig. 9). Considering that the span of 

(5b)Rult = NR(lN)

(6)lshear ≤ 25d
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the deepest formed voussoir beam we assumed to be equal 
to L, then the developed method in this article is valid if the 
anchor length equal or larger than 2– 3 Sh dependent on the 
friction angle of the joints.

In summary to develop the analytical method for calcu-
lating the anchoring capacity of the rock masses mentioned 
above the following assumptions were made:

• Anchor and contacts of the anchor-grout and grout-rock 
mass are stronger than the rock mass's resistance against 
the tensile force by the anchor.

• The anchoring capacity of rock mass is accumulation of 
the loads transferred into rock blocks at which anchor has 
been embedded in. The anchor load transferred into rock 
blocks is maximum at the deepest block which has depth 
of L – lshear. The transferred load into the rock blocks 
decreases exponentially along the anchor.

• The anchoring resistance of the rock blocks which anchor 
passes through is associated with the load bearing capac-
ity of the pressure arch formed around that block or the 
tensile strength of that rock block. The span of the pres-
sure arch for the deepest formed pressure arch is equal 
to the anchor length (L) and the span of the pressure 
arches for the other blocks can be estimated with assum-
ing θ = 45 ̊ (see Fig. 9).

• The anchor length is equal or larger than 2—3 times of 
Sh, dependent on the friction angle of the rock joints.

4  Implementation

In this section, the procedure and input data required for 
calculating the anchoring capacity of the rock mass are 
presented.

The following input data are required from the rock mass 
and anchors:

– dip/dip-direction of all discontinuity sets.
– spacing of each discontinuity set to estimate the size of 

the interlocking blocks:  Sh,  Sv and  So; where Sh is spac-
ing of discontinuity sets sub-perpendicular to the anchor 
(thickness of the pressure arch building block),  Sv is 
the spacing of the sub-parallel discontinuities with the 
anchor and So is the spacing of the discontinuities where 
they are forming the out-of-plane thickness of the pres-
sure arch (for more detail see Appendix 1).

– friction and dilation angles of discontinuities (φ and ψ, 
respectively).

– uniaxial compressive and tensile strength of the intact 
rock (σci and σti, respectively).

– Young's modulus of the rock mass  (Erm).
– anchor length (L).
– anchor diameter (d).

– diameter of the borehole  (dg).

To calculate the anchoring capacity of the rock mass, 
these steps should be followed:

1. To have rock block interlocking effect, the rock mass 
should have at least one discontinuity set which is either 
parallel to the anchor or has an angle which is less than 
1/3 of the discontinuity's friction angle. Moreover, the 
sub-parallel discontinuity set with the anchor should 
have a dilation angle equal or greater than 2 degrees. 
This means that the joints should have a joint roughness 
coefficient (JRC) equal or larger than 6 (see Sect. 5.2 for 
more details). In addition, the joints should not have fill-
ing materials and joint aperture should be "partly open" 
meaning aperture ≤ 0.5 mm (according to the ISRM 
suggested methods, 2007) to guarantee the influences 
of the joint dilation. Moreover, L ≥ 2 – 3 Sh according 
to Eq. (33). If these mentioned conditions are valid, 
then there is the possibility of rock block interlocking, 
and one can proceed to step 2. If not, then the proposed 
method in this paper is not applicable.

2. The location of the deepest formed voussoir beam at 
the anchor base is equal to L – lshear, where lshear can be 
determined from Eq. 6.

3. Calculate the bearing capacity of the deepest pressure 
arch that can be formed at depth of L – lshear with if the 
span of the beam is SN = L (use Eq. (2) and see Appendix 
1 and 2 for detail of the calculations and considerations). 
The outcome of this step will be reported as R  (lN).

4. If the rock mass contains two perpendicular disconti-
nuity sets which are subparallel with the anchor, the 
anchoring capacity of rock mass can be calculated by 
Eq. (5b); else, proceed to step 5.

5. Calculate coefficient k by Eq. (4). To be on the safe side 
for engineering applications it is recommended to utilise 
Eq. (12) to calculate coefficient k (see Sect. 5.2 for more 
details). However, assuming k = 1 1/m can be reason-
able estimate according to the numerical modelling (see 
again Sect. 5.2).

6. Calculate rock mass anchoring capacity by Eq. (5a).

See Appendix 3 for an illustrative example.

5  Calibration and Discussion

The suggested method is calibrated with the numerical mod-
elling presented in Sect. 2 and field test results by Thomas-
Lepine (2014) for the rock mass classes which have the pos-
sibility of generating block interlocking. The main objective 
of the calibration is to show that the developed method can 
achieve a reasonable estimation of the anchoring capacity 
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of rock masses in comparison to the classical cone model 
while the real loading and failure mechanism were consid-
ered explicitly in the analysis. Then, the correlation between 
the outcomes of the developed method and the current state-
of-the-art anchor design is discussed to further validate the 
assumptions made in developing of the method, identify its 
benefits and limitations.

5.1  Calibration of the Developed Analytical 
Approach with the Numerical Models

The proposed theoretical method is calibrated by the 3D 
numerical modelling carried out in Sect. 2 for the rock 
mass classes that exhibited rock block interlocking (classes 
90–90–00, 90–60–00 and 90–30–00 in Table 1). In assess-
ing the anchoring capacity of the modelled rock masses, it 
was assumed that the deepest voussoir beam is located at the 
anchor base, i.e. the shear length is equal to zero, since in the 
models the contact of the grout-rock and anchor-grout has 
very large shear strength to make the failure to be limited to 
rock mass failure.

To estimate the load bearing capacity of the deepest formed 
pressure arch we utilise the voussoir beam analogy as dem-
onstrated in Appendices 1 and 2. To do so we need to know 
the Young's modulus of the rock mass. Based on Goodman 
(1991), the Young's modulus of the rock mass can be calcu-
lated as follows:

where Ei is the Young's modulus of the intact rock and Kn is 
the normal stiffness of the rock joints, and their values can 
be obtained from Table 1.

Table 3 shows the relevant numerical models, their 
inputs which were utilised in the numerical models. 
Table 4 compares the outcomes of the numerical and ana-
lytical method. The error between numerical and analyti-
cal results were calculated as:

(7)Erm =
EiSvKn

Ei+SvKn

,

(8)Error(%) =
xnum − xanalyt

xnum
× 100

Table 3  Properties rock mass 
and anchor for the numerical 
models which are used to 
calibrate the analytical method*

* dip1 and  dip2 are representing the dip angle of two main discontinuities which are forming the blocks, 
while dip angle of the 3rd discontinuity is 0.0. φ is the friction angle of rock joints and ψ is the dilation 
angle

Id L(m) Sj(m) dip1 dip2 φ (°) ψ (°) σci (MPa) λ σti (MPa)

1 2 0.5 90 90 30 2 100 0.5 4
2 2 0.5 90 60 30 2 100 0.5 4
3 2 0.5 90 30 30 2 100 0.5 4
4 4 0.5 90 90 30 2 100 0.5 4
5 4 0.5 90 60 30 2 100 0.5 4
6 4 0.5 90 30 30 2 100 0.5 4
7 4 0.5 90 90 30 10 100 0.5 4
8 4 0.5 90 60 30 10 100 0.5 4
9 4 0.5 90 30 30 10 100 0.5 4
10 4 0.5 90 90 20 2 100 0.5 4
11 4 0.5 90 60 20 2 100 0.5 4
12 4 0.5 90 30 20 2 100 0.5 4
13 5 0.5 90 90 30 2 100 0.5 4
14 5 0.5 90 60 30 2 100 0.5 4
15 5 0.5 90 30 30 2 100 0.5 4
16 4 0.2 90 90 30 2 100 0.5 4
17 4 0.2 90 60 30 2 100 0.5 4
18 4 0.2 90 30 30 2 100 0.5 4
19 4 1.5 90 90 30 2 100 0.5 4
20 4 1.5 90 60 30 2 100 0.5 4
21 4 1.5 90 30 30 2 100 0.5 4
22 4 2 90 90 30 2 100 0.5 4
23 4 2 90 60 30 2 100 0.5 4
24 4 2 90 30 30 2 100 0.5 4
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where xnum is the numerically measured value and xanalyt is 
the analytical calculated values.

As shown in Table 4, according to the analytical method, 
in all the numerical models presented in Table 3 the rock 
blocks should fail in the tensile mode, as it is observed in 
the numerical models (this can be seen in the Table 4 by the 
fact that R(lN) = Rten(lN)). In addition, the failure occurs in 
the deepest formed pressure arch which coincides with the 
numerical modelling results. Comparison of the results of 
the analytical and numerical techniques shows that, despite 
all the simplifications, the developed technique manages 
to assess the anchoring resistance of the rock mass with 
error of less than -15% (Table 4). This error margin is much 
smaller than the extreme overestimation from the traditional 
cone method (over 600% according to Bruce 1976).

5.2  Calibration of the Developed Analytical Method 
with the Field Tests

Thomas-Lepine (2014) performed 50 tests on the anchor-
ing capacity of short bolts with diameter of 25  mm 
installed in boreholes with diameter of 45 mm with lengths 
of 0.1 to 1 m. Among all the tests, only 21 showed failure 
in the rock mass. The test site was a dolomite open pit 

mine, Verdalskalk in Norway. The intact rock has uniaxial 
compressive strength of 94.5 MPa with standard devia-
tion of 12.41 MPa, the Young's modulus of the intact rock 
blocks is 61.8 GPa with standard deviation of 4.77 GPa. 
Thomas-Lepine (2014) together with the test results pub-
lished photographs of the each test location before and 
after pull-out test of the rock bolt. In addition, for a num-
ber of the test locations, photographs of the cores from the 
borehole, which used to install the bolt is also provided. 
As mentioned in the introduction, two different modes 
of failure were observed by Thomas-Lepine (2014): a 
pre-existing rock block (wedge) is uplifted by the anchor 
(wedge uplift) and cracking of the rock blocks due to ten-
sile failure in rock blocks and release of the bolt (tensile 
failure). In the wedge uplift mode of failure, the anchor 
was embedded inside only one block, and it is obvious that 
interlocking has not happened (as we discussed in Sects. 3 
and Appendix A relationship between anchor length, vous-
soir beam span and block sizes in relation to the friction 
angle of the joints). 11 tests show rock block tensile failure 
which they are summarised in Table 5. According to the 
pictures provided for the tests, the rock mass contains 3 
joint sets with estimated properties presented in Table 6. It 
is estimated (with core pictures and pictures from the test 

Table 4  Calibration of the 
numerical and analytical models

Id lN
(m)

Rst  (lN)
(MN)

Rcr  (lN)
(MN)

W  (lN)
(MN)

Rint  (lN)
(MN)

Rten(lN)
(MN)

R(lN)
(MN)

K
(1/m)

Rult
(MN)

Numerical
result (MN)

Error
(%)

1 1.75 34.22 1.75 0.05 3.66 0.98 0.98 1.00 3.92 3.60 − 8.89
2 1.75 34.22 1.75 0.05 3.66 1.13 1.13 1.00 2.49 2.35 − 5.96
3 1.75 34.22 1.75 0.05 3.66 1.98 1.98 1.00 4.35 4.30 − 1.16
4 3.75 4.94 0.82 0.22 2.29 0.98 0.98 1.00 7.80 7.00 − 11.43
5 3.75 4.94 0.82 0.22 2.29 1.13 1.13 1.00 2.82 2.50 − 12.80
6 3.75 4.94 0.82 0.22 2.29 1.98 1.98 1.00 4.66 4.20 − 10.95
7 3.75 4.94 0.82 0.22 2.29 0.98 0.98 1.00 7.80 7.20 − 8.33
8 3.75 4.94 0.82 0.22 2.29 1.13 1.13 1.00 2.82 2.80 − 0.71
9 3.75 4.94 0.82 0.22 2.29 1.98 1.98 1.00 4.66 4.90 4.90
10 3.75 4.94 0.82 0.22 2.30 0.98 0.98 1.00 7.80 6.80 − 14.71
11 3.75 4.94 0.82 0.22 2.30 1.12 1.12 1.00 2.81 2.50 − 12.40
12 3.75 4.94 0.82 0.22 2.30 1.97 1.97 1.00 4.66 4.10 − 13.66
13 4.75 2.58 0.64 0.34 2.30 0.97 0.97 1.00 9.75 9.20 − 5.98
14 4.75 2.58 0.64 0.34 2.30 1.12 1.12 1.00 2.85 2.72 − 4.78
15 4.75 2.58 0.64 0.34 2.30 1.12 1.97 1.00 5.00 4.70 − 6.38
16 3.88 0.22 0.10 0.11 0.51 0.22 0.22 1.00 3.60 3.20 − 12.50
17 3.88 0.22 0.10 0.11 0.51 0.26 0.26 1.00 1.17 1.10 − 6.36
18 3.88 0.22 0.10 0.11 0.51 0.47 0.47 1.00 2.18 2.30 5.22
19 3.25 393.70 24.70 0.64 51.31 8.95 8.95 1.00 17.90 18.00 0.56
20 3.25 393.70 24.70 0.64 51.31 10.34 10.34 1.00 12.65 11.00 − 15.00
21 3.25 393.70 24.70 0.64 51.31 19.93 19.93 1.00 21.03 20.00 − 5.15
22 3.00 1040.08 61.24 0.86 125.09 15.97 15.97 1.00 31.97 30.00 − 6.57
23 3.00 1040.08 61.24 0.86 125.09 15.97 15.97 1.00 20.94 19.20 − 9.06
24 3.00 1040.08 61.24 0.86 125.09 15.97 15.97 1.00 36.30 34.00 − 6.76
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sites) that the spacing of the joints should vary between 
0.15 to 0.25 m in the tests presented in Table 5.

As a rule of thumb, the ratio of the uniaxial compressive 
strength to the tensile strength for intact rocks is approxi-
mately equal to the mi parameter of the Hoek–Brown 
strength criterion (Jaeger et  al. 2007). For Carbonate 
rocks according to Hoek and Brown (1997) mi should be 
between approximately 10 and 20, meaning that the tensile 
strength of dolomite at the study site should vary from 
4.72 to 9.40 MPa.

Calculations from the developed analytical method indi-
cate that to achieve the anchoring capacities obtained from 
the field tests (between 15 to 23 tonnes), the joints spacing 
should be varying between 0.13 and 0.23 m (Table 7). This 
assessment is in good agreement with the observations 
for the block sizes in the site. Moreover, the analytical 
method predicts that the rock blocks should fail by the 
tensile mode, also confirmed with the field observations.

5.3  Discussion

5.3.1  Joint Dilation and Friction Angles

As demonstrated in Sect. 4, the anchoring capacity of a 
rock mass is associated with the load bearing capacity of 
the deepest formed pressure arch. For block interlocking 
to form, as demonstrated by the numerical modelling, it is 

Table 5  Field tests of fully encapsulated rock anchors by Thomas-Lapin (2014) which represents had block interlocking effect and represented 
the rock block tensile failure under the tensile force of the anchor

Test-ID Observed failure mode of rock mass in the pictures Anchoring 
capacity 
(MN)

Length (m) Bolt 
diameter 
(mm)

Borehole 
diameter 
(mm)

44 Tension failure in rock 0.15 0.3 25 45
11 Tension failure in rock 0.18 0.5 25 45
7 Tension failure in uplifted block 0.20 0.3 25 45
33 Tension failure in rock 0.20 0.3 25 45
40 Tension failure in rock on top, small zone with sliding at the contact of grout-rock 

is visible in the base
0.20 0.3 25 45

21 Tension failure in rock on top, small zone with sliding at the contact of grout-rock 
is visible in the base

0.21 0.4 25 45

23 Tension failure in rock on top, small zone with sliding at the contact of grout-rock 
is visible in the base

0.23 0.3 25 45

Table 6  Estimated mechanical properties for rock joints for the study site utilised by Thomas-Lapin (2014)

1 Residual friction angle was assumed as the lowest bond of the basic friction angle. The basic friction angle values are from Barton and 
Choubey (1977)
2 JRC is estimated as lower bond for planar and rough joint surface
3 JRC estimated as 1/3 of the uniaxial compressive strength for fresh and slightly weathered joint surfaces with no filling
4 The lower bond from tests results reported by Bandis et al. (1983) on similar rock masses
5 As the minimum value can estimated from Barton–Bandis method

Join set ID Estimated Dip 
angle (°)

Residual friction 
angle (°)1

JRC (°)2 JCS (MPa)3 Kn (GPa / 
m)4

Friction angle 
(°)5

Dilation 
angle (°) 5

Sub-vertical 90 27 6 30 8 30 < 2 < 
inclined 60 27 6 30 8 30 < 2 < 
sub-horizontal 20 27 6 30 8 30 < 2 < 

Table 7  Corresponding joint spacing estimated based on the anchor-
ing capacity measured in the field in comparison to the developed 
analytical method

Estimated tensile 
strength of intact 
rock (MPa)

Anchor 
length 
(m)

Anchoring capac-
ity from tests 
(MN)

Estimated aver-
age joint spacing 
(m)

4.72 0.3 0.15 0.14 to 0.18
10.40 0.4 0.23 0.13 to 0.17
4.72 0.3 0.15 0.16 to 0.23
10.40 0.4 0.23 0.16 to 0.21
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necessary to have a dilation angle of at least 2 degrees in 
the sub-parallel discontinuities with the anchor. According 
to Barton and Choubey (1977) and more recently Barton 
et al. (2023), the initial dilation angle of the joints can be 
assessed as follows:

where JRC is the joint roughness coefficient, JCS the joint 
surface strength and σn is the normal stress at the joint sur-
face. Assuming the worst-case scenario where JCS = σn, to 
have at least 2 degree of dilation JRC should be at least 6 
which corresponds to planar-rough joint surface or better. 
Therefore, in rock masses with planar-smooth and planar-
slickensides the block interlocking effect cannot be expected 
even though they might have sub-parallel joints with the 
anchors.

5.3.2  Rock Mass Classification and Anchoring Capacity

As a general assumption in rock engineering, improving the 
rock mass quality should lead to an increase in the anchor-
ing capacity of the rock mass. The rock mass quality can be 
described by rock mass classes based on RMR, Q or GSI 
methods. The rock mass quality is a combination of weighted 
factors based on rock block size, shear resistance between 
blocks, mechanical competences of the blocks, stress state 
and groundwater condition. Assuming constant intact rock 
strength, groundwater and stress conditions, increasing the 
frictional resistance between blocks and increasing the block 
size, should improve rock mass quality. Hence, by increas-
ing the joint friction angle and block size, while the intact 
rock's strength remains constant, anchoring capacity of the 
rock mass is also expected to improve. However, we argued 
in Fig. 1 that there is not enough published data from anchor 
tests to validate this assumption. Therefore, in this section, 
we will discuss how changes in the rock mass quality might 
affect the anchoring capacity of the rock mass by sensitivity 
analysis upon the rock block size.

Consider a rock mass with Ei = 40 GPa containing three 
joint sets, similar to the rock mass classes of 90–90-00, 
90–60-00, 90–30-00 in the numerical models. The spacing 
of all the three joint sets (Sj) varies from 0.2 to 1.0 m. The 
normal stiffness of the rock joints is 20 GPa/m. Anchors 
with lengths of 3, 5 and 10 m will be installed vertically in 
the rock mass. Figure 10 shows the anchoring resistance of 
the rock mass calculated for different anchor lengths versus 
the joint spacing in different rock mass classes. It should be 
noted that for all the rock mass classes and block sizes, the 
rock block at the anchor base failed by the tensile mode. 
For the rock mass class 90–90–00 (Fig. 10a), the anchoring 
resistance of the rock mass increases with the joint spacing. 

(9)� =
JRC

3
log

10

(
JCS

�n

)

For this rock class, as demonstrated in Sect. 2, the anchor 
load is distributed evenly in the blocks in which the anchor is 
embedded. Therefore, the anchoring capacity is also improv-
ing by the anchor length.

For rock mass classes 90–60–00 and 90–30–00, although 
anchoring capacity improves by increasing the block size, a 
larger anchor length does not always lead to a larger anchor-
ing capacity (Fig. 10b, c). In these rock mass classes, increas-
ing the anchor length from 3 to 5 m improves the anchoring 
capacity but increasing anchor length from 5 to 10 m only 
slightly changes the anchoring capacity. This can be attributed 
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Fig. 10  Anchoring capacity versus joint spacing for rock mass classes 
of: (a) 90–90–00, (b) 90–60–00 and (c) 90–30–00
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to the earlier presented reasoning that the anchoring capacity 
of the rock mass is mostly associated with rock block size and 
the tensile strength of the rock block which are forming the 
deepest pressure arch; the load transferred into the rock blocks 
above the anchor base decreases exponentially. In this case, the 
ratio of the anchoring capacity to the anchor length should be 
slightly decreasing if anchor length increases in same quality 
rock mass. In addition, with improving the rock mass quality 
the ration of the anchoring capacity to the anchor length should 
be constant or decreasing if the anchor length also increases, 
which can also be seen in Fig. 1b–d for field test results. How-
ever, according to the traditional cone model the anchoring 
capacity should increase by the anchor length, which is not 
supported by the field test data presented in Fig. 1b–d.

Joint spacing is not a single value in reality; the joint spac-
ing in a rock mass can vary in a large range. Considering 
that a rock mass has several joint sets, finding a representa-
tive joint spacing (and the corresponding rock block size) 
which is a necessary input for the proposed analysis is not a 
straightforward task. One approach can be utilising statistical 
methods to calculate a representative joint spacing and the 
required anchor length which grantee that at least more than 
one block along the anchor has larger joint spacing (block size) 
that the representative value. With this technique the length 
of a fully bonded anchor can be obtained. Investigating this 
issue is beyond the scope of this paper and is a topic for future 
research.

5.3.3  Distribution of the Transferred Load to Rock Blocks 
Along the Anchor

According to the developed analytical method, the anchoring 
capacity of the rock mass is the sum of the anchoring resist-
ances of the rock blocks along the anchor. The largest portion 
(over 60%) of the anchoring capacity comes from the anchor-
ing resistance of the base block (rock block located exactly 
above the shear length at the anchor base, Fig. 7). If the rock 
mass quality is similar along the anchor (as it is also assumed 
in developing the analytical method), the anchoring resistance 
of rock mass is considered to decrease exponentially with coef-
ficient k (Eq. 3). However, numerical models shows that k ≈ 
1.0 1/m is valid for all the cases except situations similar to the 
rock mass class 90–90–00.

In case of elastic contact between anchor and grout and 
grout and rock, and rock mass anchoring resistance along the 
anchor larger than the transferred load from the anchor to the 
blocks, the shear stress distribution along the rock mass and 
grout interface generated by anchor pull-out can be represented 
by (Farmer 1975; Li and Stillborg 1999) as follows:

(10)� = �maxexp
(
−kgl

)
,

where τmax is the maximum shear stress at collar of the 
anchor for fully grouted anchor and kg is constant which 
represents the shear stress distribution along the contact of 
either anchor-grout or grout-rock. In case of elastic rock 
mass (rock mass much stronger than the anchor load), it can 
be assumed that k ≈ kg and hence

where Eb is the Young's modulus of the anchor, Gr is the 
shear modulus of rock mass, Gg is the shear modulus of 
grout, dg is the borehole diameter and do is the diameter of 
an imaginary cylinder around the anchor which is influenced 
by the anchor load. It can be assumed based on the physical 
modelling of anchors by Dados (1984) do ≈ 2L for a long 
anchor, and for practical reasons anchors mostly have length 
which is larger than the shear length (lshear). Therefore, d0/
dg ≥ 80 while (dg/d) ≤ 2. Hence,

Equation (12) can be utilised to estimate the load trans-
ferred into the rock blocks along the anchor, if we assume 
that there is no debonding along the anchor. Figure 11 
compares the transferred load to the rock blocks from the 
anchor obtained from numerical modelling, compared to the 
assumption of k = 1 and k obtained for the elastic condition 
by Eq. (12). In the engineering design of the anchors, it is 
mandatory to guarantee that the rock mass remains elastic, 
meaning that k should be estimated by Eq. (12); this leads to 
a conservative estimation of the anchoring capacity (lower 
bound).

5.3.4  Base Plate Forming and Anchoring Capacity

Numerical modelling shows that at the location of the deep-
est formed pressure arch close to the anchor base, instead of 
one pressure arch (voussoir beam) several rows of pressure 
arches are formed (as demonstrated in Fig. 6) and utilised 
in Appendix 2 to assess anchoring resistance in a specific 
depth. The majority of published field tests report that the 
uplifted rock by an anchor has a cone shape. This might be 
because in these field tests the authors were more focused 
on the uplifted mass by the anchors and not the volume of 
the rock mass interacting with the anchor. The interacting 
rock mass with an anchor is far larger than the cone volume.

Generating the base plate (as denoted in this paper) leads 
to a change in the shape of the failed rock mass around 
anchor: a frustum shape rather than a cone. Base plate 

(11)k =
2
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forming improves the strength of the pressured arch to be 
much higher than the tensile strength of the rock block which 
transfers the anchor load to the rock mass. The tensile failure 
of the load transferring block can lead to sudden release of 
the anchor and uplifting the rock mass with it which might 
have a conical geometry. The base plate forming is an inter-
esting phenomenon which should be considered further in 
investigating the anchoring capacity of rock masses.

5.3.5  Limitations

The developed method in this paper is for a specific con-
dition in blocky rock masses. It includes simplifications 
regarding geometry, size, boundary conditions and loading 
of the formed pressure arches along the anchors.

In addition, according to the voussoir beam mechanic 
(Appendix 1) the anchor length should be at least 2 –3 
times of the average joint spacing (depending on the fric-
tion angle of the joints) to avoid shearing failure between the 
blocks and to generate rock block interlocking (see Eq. (33)). 
Therefore, the developed method cannot be implemented for 
such anchor length conditions.

The technique presented in this manuscript does not 
consider the groundwater in the analysis as it adds more 
complexity in terms of the weight of the uplifted blocks 
by the formed pressure arches, decrease in the stiffness of 
the rock mass, tensile and compressive strength of the rock 
block. In addition to decreasing the friction angle between 
the blocks, groundwater can eliminate the rock joint dila-
tions since it can decrease JCS. Moreover, groundwater 
effect on the friction and dilation angles of weathered 
joint surfaces can be more dramatic compared to fresh and 
rough joint surfaces. Addressing these questions requires 
further numerical modelling in conjunction with field tests 
of anchors in saturated rock masses.

6  Conclusions

A simplified analytical method was suggested to calculate 
the anchoring capacity of a rock mass when the rock mass 
has a joint set which is sub-parallel with the anchor. The 
analysis shows that in such a situation the rock blocks tend 
to interlock and generate an arch shaped stress concen-
trated zone. This zone behaves like an arch and transfers 
the tensile force of the anchors as a horizontal compressive 
force into the rock mass. A simplified analytical method 
was presented to calculate anchoring capacity of the rock 
mass in this situation, and it was calibrated against numer-
ical models and filed tests.

The method suggested in this paper shows that the tra-
ditional rock mass classification techniques are insufficient 
for selecting sites where anchorage solutions are neces-
sary (e.g., windfarms and suspension bridges). Rock joint 
orientation relative to the anchor, rock block size, ten-
sile and compressive strength of the intact rock, stiffness 
of the rock mass and the shearing behaviour of the rock 
discontinuities are the most important parameters to be 
considered as well as groundwater table and the ground 
surface topography.

The major outcome of this study is that the traditional 
cone weight method can be misleading in determining rock 
mass capacity against the tensile load from an anchor. For 
instance, increasing the anchor length does not lead to 
similar improvements in anchoring capacity in all rock 
masses, as predicted by the cone method.
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Fig. 11  Load transferred to rock blocks located along the anchor with 
length of 4 with rock mass classes of: (a) 90–60–00 and (b) 90–30–
00. Numerical results are compared with assuming that k = 1 and 
when k is calculated by Eq. 11
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Appendix 1

Simplified Voussoir Beam Analogy for Rock 
Block Interlocking

As demonstrated by the numerical modelling in Sect. 2 and 
physical modelling by Dados (1984), the interlocked blocks 
help the rock mass to resist the tensile force from the anchor 
by transferring it as horizontal forces. The stability of inter-
locked blocks has been investigated by voussoir beam anal-
ogy in rock engineering, which will be also utilised here.

For the sake of simplicity, we hereby assume that the 
anchor is vertical and the rock joints which are sub-parallel 
with the anchor are sub-vertical. The following assumptions 
are made to be able to mathematically model the stability of 
a voussoir beam. The compression arch generated due to the 
block interlocking has almost the same thickness (na) at the 
abutments of the arch and the centre of the arch. However, 
the thickness of the pressure arch is larger than na in the 
stretch between the abutments and midspan (Fig. 4d and 12). 
The stress distribution on the sub-vertical joints at the pres-
sure arch abutments and the midspan of the arch has a tri-
angular shape (Fig. 12). The rock blocks behave elastically. 
It was assumed by several researchers that the compression 
arch has a parabolic shape (e.g. Sofianos 1996; Diederichs 
and Kaiser 1999). However, Shabanimashcool and Li (2015) 
showed that approximating the parabolic arch with a bilinear 
shape as shown in Fig. 12 will not lead to a significant error 
in the results. In this study, the pressure arch is similarly 
approximated by a truss consisting of two linear elements 
connected to each other in the midspan of the pressure arch. 
This assumption allows us to use the techniques used for the 

stability analysis of two elastic bars hinged together in the 
midspan subjected to a vertical force, as an example by Mac-
eri (2010). In addition, it was assumed that the magnitude of 
the horizontal in-situ stress can be neglected.

As Fig. 12 shows, deflection of the pressure arch under 
the anchor force (P) generates an axial force F in the truss 
elements, which has horizontal projection of Fh. The hori-
zontal force (Fh) is offset by the distance of z, denoted as 
the moment arm. Initially, the moment arm is z0, but with 
increase of the anchor force P it decreases to z. z0 can be 
calculated as follows:

where Sh is the thickness of the voussoir beam or spacing 
of the sub-horizontal joints. Due to the pull-up force P, the 
compression arch shortens, generating force F. Static equi-
librium is fulfilled if the vertical force of P is equal to the 
vertical projection of the force generated in the assumed 
truss elements as follows:

The axial force in the truss elements can be calculated 
as follows:

where Ei is the Young's modulus of the assembly of the rock 
blocks, A is the mean cross-section area of the compression 
arch and εc is the Cauchy strain. We know that εc = (Γ0- Γ)/ 
Γ0, where Γ0 is the initial length of the truss element and 
Γ is the shortened length of the truss element after apply-
ing P (the compression strain is positive). To make the cal-
culations simpler in mathematical terms, the Green strain 
was used instead of the Cauchy strain. The Green strain is 
defined as follows:

We know that

Considering that the level of strain is very low (always 
less than 5% before the rock reaches its compressive 
strength), using the Green strain instead of the Cauchy strain 
will therefore cause error less than 1.25%, which is accept-
able for this analysis.

Considering the Green strain (Eq. 16) in Eq. (14) leads to

(13)z
0
= Sh −

2

3
n
0
,

(14)
P =

2Fz√(
S

2

)2

+ z2

(15)F = EiA�c

(16)�G =
Γ2

0
− Γ2

2Γ2

0

(17)�G = �c +
1

2
�2
c

Fig. 12  Geometry and assumptions used in voussoir beam bearing 
capacity analysis
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where δ = (z0—z)/z0 and α = S/(2z0). In the above formula-
tion, α represents the aspect ratio of the pressure arch, δ 
shows the deflection of the beam, and A is the mean cross-
section area of the pressure arch, which is a function of  n0.

It should be noted that if P instead of being concentrated 
in the middle of the compression arch (as shown in Fig. 12) 
is uniformly distributed along the arch, then the static equi-
librium is governed if the moment generated by P in half of 
the compression arch (PS/8) is equal to Fh z. In this condition, 
right-hand side of Eq. (18) and Eq. (14) should be multiplied 
by 2. In this manuscript for investigating of the anchor and 
rock mass interaction, we utilised Eq. 18 (concentrated load 
imposed in the midspan, Fig. 12).

Revisiting Fig. 12, the cross-sectional area of the compres-
sion arch in the abutments is n0 × So, where So is the out-of-
plane spacing of the rock joints or the out-of-plane thickness 
of the voussoir beam. However, the cross-sectional area of 
the voussoir beam is not constant along the compression arch 
(Fig. 4d). Therefore, a mean value for the cross-sectional area 
of the pressure arch was defined, assuming that the boundary 
of the compression arch is linear and follows parallel with the 
bilinear truss elements (Fig. 12). Hence, the mean area of the 
arch is equal to the following:

Three different modes of failure have been identified for 
the voussoir beams, namely buckling (snap-through), corner 
crushing (crushing) and sliding at the abutments and midspan 
(sliding), according to Brady and Brown (1985). The snap-
through type of instability happens when the moment gen-
erated by shortening the compression arch is not enough to 
produce resistance moment against the moment generated by 
P. The crushing type of failure happens when the maximum 
stress in the beam abutments reaches the uniaxial compressive 
strength of the rock blocks and sliding happens when the pull-
out force of P is higher than the friction resistance between the 
rock blocks in the beam.

Assuming a constant value for na (meaning that A and α 
are also constant, indicating that the geometry of the pressure 
arch is immutable), P can be expressed as the sole function 
of deflection (δ). In other words, Eq. (18) can be re-written 
as follows:

Figure 13a shows the right-hand side of Eq. (20) versus 
δ. P increases with deflection of the pressure arch until a 

(18)P = EA
�(� − 1)(� − 2)

(
√
1 + �2)

3
,

(19)A =

(
Sh −

(
Sh − na

)2
Sh −

2

3
na

)
So

(20)P

EA
(
√
1 + �2)

3

= �(� − 1)(� − 2)

maximum value, and after that decreases while the deflec-
tion increases. The highest amount of P that can be carried 
by a voussoir beam for a specific value of na can be obtained 
via the following:

Fig. 13  (a) Changes in the anchor force (P) versus the beam deflec-
tion for a specific na. (b) Changes in loading capacity of voussoir 
beam versus different depths of the pressure arch in the abutments 
(na) for a specific deflection of the beam (constant δ). It shows that 
when 0.37 ≤ na / Sh ≤ 0.48, the load-carrying capacity of the voussoir 
beams is the maximum. (c) Changes of pressure arch thickness in the 
abutment versus beam span which leads to maximum load-carrying 
capacity of the voussoir beams. Both values of na and S are normal-
ised to the beam thickness in the vertical direction (Sh)
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This leads to δ = 0.42, where the load-carrying capac-
ity of the beam is the maximum. However, as soon as the 
deflection passes beyond 0.42 the beam fails by the snap-
through mechanism, since with increase of the deflection the 
load-carrying capacity decreases. Therefore, the beam load 
corresponding to δ = 0.42 is the load capacity of the beam 
in the snap-through failure mechanism. This conclusion is 
not dependent on the assumed value of na. δ = 0.42 for snap 
through failure coinciding with the detail calculations car-
ried out by Sofiaos (1996) and Yiouta-Mitra and Sofianos 
(2018).

Several techniques including laboratory tests and numeri-
cal modelling were utilised to obtain the value of na at which 
the rock blocks in a voussoir beam start to interlock with 
each other. However, the majority of researchers utilised 
numerical modelling to find the value of na. For example, 
Sofianos (1996), through numerical modelling, showed 
that na is between 0.12 and 03 Sh for the voussoir beams 
consisting of only two rock blocks, assuming rigid abut-
ments and stiff joints in the numerical models. Similarly, 
Sofianos and Kapenis (1998) showed that na varies between 
0.12 and 0.3 Sh for a multi-jointed voussoir beam. However, 
Diederichs and Kaiser (1999) assumed elastic but very stiff 
abutments and joints, leading to the thickness of the pres-
sure arch from 0.75 to 0.35 Sh for multi-jointed voussoir 
beams, where snap-through failure happens when na = 0.35 
Sh. Tsesarsky (2012) argued that, since in nature the rock 
mass is deformable at the abutments and the rock joints, the 
approach of Diederichs and Kaiser (1999) should be used for 
numerical modelling of the voussoir beams. He also showed 
through sensitivity analysis that when the abutment blocks 
of the numerical model have a Young's modulus which is 
10 times or more larger than the Young's modulus of the 
beam rock blocks, the abutment stress distribution becomes 
nonlinear, and the thickness of the compression arch falls 
below 0.3Sh. The different results by authors were obtained 
due to different assumptions made for the abutments and 
joint stiffnesses. However, Talesnick et al. (2007) showed by 
physical modelling of voussoir beams in the laboratory that 
the na / Sh ≈ 0.5 when the rock blocks interlock. In addition, 
Shabanimashcool and Li (2015) showed, by the minimum 
stored potential energy technique, that na / Sh varies between 
0.45 and 0.375 depending on the S / Sh ratio.

Equation (18) can be re-written as follows:

(21)�(
P
�√

1+�2
�3

EA
)

��
=

�P

��
=

d(�(� − 1)(� − 2))

d�
= 0

(22)
P

E�(� − 1)(� − 2)
=

A

(
√
1 + �2)

3

In Eq. (22), the right-hand side is a function of na, S and 
Sh; i.e. it is only a function of the na / Sh and S / Sh ratios. 
Figure 13b shows the right-hand side of Eq. (22) for dif-
ferent ratios of S / Sh and na/ Sh. It shows that when na/ 
Sh = 0.37‒0.48, depending on the beam S / Sh ratio, the resist-
ance of the beam against the load P is the maximum. The 
maximum value of the right-hand side of Eq. (22) can be found 
by the following:

where A and α both are a function of na, Sh and S. This leads 
to the following:

The roots of Eq. (24) can be calculated via the Cardano 
formula (Kurosh 1972), where

Figure 13 shows na obtained from Eq. (24) for different na / 
Sh ratios. It shows that the load-carrying capacity of the beams 
is the maximum when na / Sh varies between 0.435 and 0.37 
dependent on S/Sh ratio. This range of na variation coincides 
well with Shabanimashcool and Li (2015). This mathematical 
observation is similar to the results of the numerical simula-
tions by Nomikos et al. (2002),when the assumed joint normal 
stiffness of the sub-vertical joints is less than approximately 60 
GPa/m, and Tsesarsky (2012), where they showed that 0.3 < na 
/ Sh ≤ 0.5. It should be noted that, according to these calcula-
tions (Eq. 24), when the beam span compared to the depth 
of the beam is too large, the compression arch thickness is 
0.37 Sh, i.e. when the beam has a very large span and close 
to experience snap-through failure, the na / Sh ratio should be 
close to 0.37.

The anchor load at which the voussoir beam will undergo 
the snap-through failure can be obtained via Eq. (18) consider-
ing δ = 0.42, while corresponding na is calculated by Eq. 24; 
i.e.
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To find out at which stress level the voussoir beam will 
undergo the corner crushing type of failure, we need to cal-
culate the maximum abutment stress as follows:

At the moment of corner crushing, σm = λ σci, where σci 
is the uniaxial compressive strength of the rock mass and 
0 < λ ≤ 1 is a factor that can be introduced in order to con-
sider the scale effect on the strength of the rock blocks and 
weathering of rock materials. Corresponding δ which leads 
to σm = λ σci can be calculated as follows:

where � =
4E�

3So(1+�2)
3

2

Later calculated δcrush can be utilised in Eq. (18) to cal-
culate load carrying capacity of the pressure arch against 
failure mode of corner crushing, which is denoted as Pcr. 
Equation (28) is valid when 0 <

𝜆𝜎ci

𝜔
≤ 1 . If < 𝜆𝜎ci , the com-

pressive strength of the rock blocks is very large, and the 
voussoir beam will never fail by the crushing mode of fail-
ure. Hence, in this situation the mode of failure for the beam 
is only limited to snap through. In addition, due to numeri-
cal simplifications δcrush obtained by Eq. 28 sometimes is 
slightly larger than 0.42. In this situation, as worst case sce-
nario to calculate Pcr, it should be assumed that δcrush = 0.42.

For the sliding mode of failure, the rock blocks will slide 
as follows:

where φ is the friction angle of the sub-vertical joints and β 
is the angle between F and Fh (Fig. 12).

Therefore, sliding happens as follows:

tan(β) can be calculated as follows:

Therefore

The above inequality can be checked if we find the value 
of z0 and the maximum passible value of z. z0 = Sh – 2/3 
na and na ≈ 0.48 Sh for short beams, which has the risk of 
the sliding type of failure. Therefore,  z0 = 0.68  Sh. Knowing 
that 0 ≤ z ≤ z0, the maximum possible value of z is 0.42 z0. 
Therefore, Eq. (32) can be re-written as follows:
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2Fh
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(29)P ≥ 2Fcos(�)tan(�),

(30)tan(𝛽) > tan(𝜑)

(31)tan(�) =
2(z

0
− z)

S

(32)tan(�) ≤
2
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z
0
− z

)
S

If S/Sh satisfies Eq. (33), then the voussoir beam will 
fail due to the sliding of the blocks. For example, assuming 
that the friction angle of the sub-vertical joints is between 
15 to 30 degrees; the voussoir beam will fail by the sliding 
mode of failure when S/Sh ≤ 1.36 to 2.91. If the beam does 
not satisfy Eq. (33), then the beam will fail either with 
snap-through or crushing.

In summery to find load bearing capacity of a voussoir 
beam (pressure arch) following steps should be considered:

– Obtain S, Sh, So and Erm, σci of intact rock blocks, λ and 
friction angle of the sub-vertical discontinuities.

– If Eq. (33) does not satisfy by the beam geometry pro-
ceed further, unless report that no pressure arch will be 
generated.

– Use Eq. (26) to calculate Pst.
– Use Eq. (28) to calculate δcrush and then use it to calcu-

late Pcr utilising Eq. (18).
– Minimum of Pst and Pcr will be the load bearing capac-

ity of the pressure arch or voussoir beam.

The suggested simplified method in Appendix 1 is cali-
brated with the physical testing of voussoir beams con-
ducted in the laboratory by Talesnick et al. (2007). The 
objective of the calibration is to show that the simplified 
method captures the mechanism of loading and deflection 
of the voussoir beams.

Talesnick et al. (2007) tested two different configura-
tions of the voussoir beams consisting of 6 blocks of gyp-
sum denoted as full beam and half beam under uniformly 
distributed loading by a centrifuge. In the full beams the 
gypsum blocks have size of 46, 46 and 46 mm in width, 
length, and height (respectively) while in the half beam 
the block size is 46, 46, and 23 mm in width, length and 
height, respectively. The voussoir beam is equipped with 
load cell to measure the thrust force generated inside of 
the beam by the centrifuge rotation. Each block is moni-
tored by two LVDT-s which makes it possible to measure 
uneven displacement and translation of the blocks. A sin-
gle block of the beam was instrumented by 3 strain gages, 
one located at 4 mm from top edge of the block, one at the 
middle of the block height and the last one is in 4 mm from 
the lower edge of the block. Strain gages are used only 
in full-block tests. The strain gages located in middle of 
the first block from the abutment, second block and third 
block. Before applying the centrifuge loading, the rock 
blocks were assembled and a small trust of 50–70 N were 
applied to hold them together. Table 8 shows the physical 
and mechanical properties of the gypsum blocks.

(33)
S

Sh
≤

0.78

tan(�)
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The first outcome of the tests was that regardless of being 
full-beam or half-beam the trust force increases linearly with 
increasing of the centrifuge force (or acceleration), Fig. 14a, 
c. Extrapolation of the strain gage data toward midspan and 
abutment of the voussoir beam shows that the thickness of 
the pressure arch (na) along the beam does not change with 
loading level, and it is almost constant. In the midspan na is 
always approximately 0.46 of the block thickness while in 
the abutment is approximately 0.76 of the block thickness. 
The deflection of the beams under the load is nonlinear and 
half-beam shows larger deflection in comparison to the full 
beam (Fig. 14b, d).

According to the developed analytical method the thick-
ness of the pressure arch (na) is only dependent on the beam 
span ratio to the beam thickness (S/Sh) and do not dependent 
on the loading level which can be seen from the tests results 
as well. According to Eq. 24 for full-beam and half-beam, 
na should be equal to 0.39 Sh and 0.37 Sh in midspan of the 
beam, which have differences of 17.9% with physical tests 
for the full beam. Since the laboratory results is extrapola-
tion of the nearest measurement with only 3 strain gages, 
the differences of 17.9% is acceptable. Moreover, the rock 
blocks in the tests are pre-tensioned with 50–70 N thrust 
forces which is affecting the outcomes specially in the thick-
ness of the pressure arch at the abutments.

Comparing the calculated and measured thrust force and 
deflection for the full-beam and half-beam shows that there 
are less than 20% differences between them. Analytical 
method captures the mechanism of developing in the trust 
and deflections of the voussoir beams similarly to the labora-
tory measurements.

Appendix 2

Rock Block Interlocking Effect on Rock Mass 
Anchoring Capacity

In this appendix, we are going to present how to utilise 
the developed methods for assessing load bearing capac-
ity of the voussoir beams in combination with the tensile 

strength of the rock blocks to calculate the anchoring 
capacity in a specific depth along an anchor.

If an anchor embedded in rock mass which contains 
sub-parallel discontinuities with the anchor, then it has 
potential to build pressure arches (voussoir beams) along 
the anchor. Then the anchoring capacity of the rock mass 
will be dependent on the load bearing capacity of those 
pressure arches. As demonstrated in Appendix 1, the 
voussoir beams (pressure arches) fail under one of the 
mechanisms of block sliding, corner crushing and snap 
through. However, numerical modelling showed that there 
is another type of failure which is tensile failure of the 
block where anchor is grouted in it and the block is trans-
ferring the anchor load into the pressure arch. To have 
tensile mode of failure the contact between anchor-grout 
and grout -rock is strength enough and they do not go 
under failure. In addition, the interlocking effect should 
be strong enough so that the voussoir beams do not fail by 
any mechanisms mentioned above.

As demonstrated in Fig. 6, at the anchor base (or any 
point along the anchor) several parallel pressure arches are 
formed (these group of parallel pressure arches denoted as 
base plate close to the anchor base). The number of the 
parallel pressure arch which are generated in minimum is 
3 but increases as L/Sj ratio increases (longer anchor and 
shorter Sj means more rows of parallel pressure arches 
at the base plate). Considering the frustum shape of the 
involving rocks with an anchor, the span of the rows of the 
pressure arches generated along an anchor should increase 
with decreasing depth.

Figure 15 shows the free diagram of a pressure arch 
group generated at depth of li along an anchor. The load 
transferred to the block by the portion of the anchor 
embedded in it is P(li), while the resistances of the pres-
sure arches (which are generated in out-of-plane direction 
in Fig. 15) is Rint(li):

n is the total number of the parallel pressure arches gener-
ated at depth of li. According to the numerical modelling 
Fig. 6e, at least three rows of the pressure arches are gener-
ated in all the models. Hence, the most conservative condi-
tion can be to assume to have three rows of the pressure 
arch. In addition, the span of the first pressure arch is at least 
equal to the anchor length (see Sect. 3), which decreases in 
the other parallel formed pressure arches (see Fig. 6). For 
one specific block depth of li, the load bearing capacity of 
the first voussoir beam is smaller than the second one and 
second one from the third one, or

(34)
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(
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int,1

(
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)
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(
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Table 8  Mechanics and physical properties of gypsum blocks from 
tests conducted by Talesnick et al. (2007)

Properties Unit Value

Density Kg/m3 1207
Young's modu-

lus of blocks 
(E)

MPa 5.1

Normal stiffness 
of crosscutting 
joints

MPa/m Linear function of normal stress as 
demonstrated by Tsesarsky et al. 
(2007)
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Since, their span decreases. However, the portion of the 
anchor loads carried by beam one, larger than the second and 
second one larger than third one (three angular distribution 
of the anchor loads from voussoir beam 1 to 3). Therefore, 
for a worst-case scenario,

The weight of the total mobilised rock blocks by those 
parallel pressure arches of 1 to 3 is W(li), which is

With assuming worst case scenario and θ = 90 in Fig. 9, 
the weight of the mobilised rock masses by each of the vous-
soir beams follows:

because of the again span of the formed voussoir beams. 
With assuming that each pressure arch consists of 3 blocks 
(minimum required number of blocks to form a pressure 
arch) and 3 parallel voussoir beams are formed, a conserva-
tive estimate for the weight of mobilised blocks by the paral-
lel pressure arches will be as follows:

where γ is density of the rock blocks.
The rock block at which the anchor embedded in (see 

Fig. 15) it might also fail by the tensile mode (as discussed 
above). In this condition, since the pressure arches are 
strong enough, we can assume that the tensile mode of fail-
ure will be similar to concrete cone failure generated by an 
anchor installed inside it (see ACI 349-85 1985), as shown 
in Fig. 15. The failure surface is a surface of a cone which 
is limited when reaches to the boundaries of the rock block 
and the apex angle of the cone is 90 degrees. The tensile 
strength of the block against the anchor load can be defined 
as follows:

where σti is tensile strength of intact rock and As is the sur-
face of the failure cone which can be determined as follows:
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Fig. 14  Comparing of the physical modes by Talesnick et al. (2007) 
with the developed simplified analytical method: (a) developed thrust 
versus acceleration for full-beam, (b) beam deflection versus accel-
eration in full-beam, (c) developed thrust versus acceleration for half-
beam, and (b) beam deflection versus acceleration in half-beam

▸
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where dipinc is the dip angle of the inclined joint set, see 
Fig. 15.

In conclusion, the anchoring capacity of rock mass at 
depth of li, where block i is located, is minimum of the load 
bearing capacity of the formed voussoir beams plus the 
weight of mobilised rock mass by them and the tensile load 
carrying capacity of the block which anchor embedded in, 
as is presented in Eq. (2).

Appendix 3

Consider a rock mass with 3 joint sets as demonstrated 
in Table 9. The anchor has a length of 3 m, is embedded 
vertically inside the ground, and the anchor has a nominal 

(41)As =

√
2SvSo

sin(dipinc)
,

diameter of 40 mm which is installed in borehole with diam-
eter of 45 mm. To calculate the anchoring capacity the fol-
lowing steps were followed:

1. Since there is a vertical joint set which is parallel with 
the anchor, block interlocking due to the anchor load 
will happen. In addition, the rock joint surfaces has dila-
tion angle of larger than 2 degrees.

2. The shear length of the anchor considered to be 25 times 
its diameter (Eq. 6), which is 1 m. The deepest voussoir 
beam will be formed is between depths of 2 m (Table 
10).

3. For deepest voussoir beam, Rint(lN) = 0.2 to 3.11MN, 
W(lN) = 0.049 to 0.146 MN and Rtens(lN) = 0.15 to 1.51 
MN. Therefore, the failure mode of the deepest formed 
pressure arch is due to the tensile failure in the block 
which anchor embedded in.

4. Considering k = 1 1/ m leads to anchoring capacity for 
the rock mass 0.70 to 2.80 MN.

45  

Fig. 15  Free diagram of several group of pressures arches formed in 
parallel. The possible tensile failure of the block at which the anchor 
paths through is shown also

Table 9  Intact rock and rock 
mass properties for example

Parameter Unit Value

Density kg /  m3 2500
Young's modulus of intact rock GPa 20
Uniaxial compressive strength of 

intact rock
MPa 70

Reduction factor for UCS (λ) – 0.5
Uniaxial tensile strength MPa 3
Discontinuities Joint set one Joint set two Joint set one
Dip/dip direction Degrees 90/090 45/270 00/000
Cohesion MPa 0 0 0
Friction Degrees 30 30 30
Dilation angle Degrees 3 3 3
Normal stiffness GPa/m 4 4 4
spacing m 0.2–0.3 0.2–0.3 0.2–0.3

Table 10  Calculations carried out for the example

Parameter Unit Values

So m 0.20 0.40 0.60
Sv m 0.20 0.40 0.60
L m 3.00 3.00 3.00
d m 0.04 0.04 0.04
lshear m 1.00 1.00 1.00
lN m 2 2 2
Rint(lN) MN 0.20 1.03 3.11
W(lN) MN 0.05 0.10 0.15
Rtens(lN) MN 0.15 0.66 1.51
R(lN) MN 0.15 0.66 1.51
k 1/m 1.00 1.00 1.00
Rult MN 0.69 1.60 2.79
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For design purposes the anchor capacity of rock mass 
can be assumed to be 0.70 MN. For comparison reason, we 
can calculate the anchoring capacity with the cone weight 
method, if the apex of the cone located at depth of L-lshear = 3 
– 1 = 2 m and apex angle of the cone is 90 degrees. The 
anchoring capacity of the rock mass can be estimated as 
0.23 MN.
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