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A B S T R A C T

Estimation of the risk posed by inland fluvial floods to critical linear transportation infrastructures requires
quantifying the damage inflicted by flooding on roads and railways. The estimated risk is often quantified in
terms of the Expected Annual Damage [EAD] of the given linear structure. The aim of this article is to shed
light on the estimation of this number and its uncertainty. The damage function models, which describe the
degree of damage given flood intensity, represent a source of uncertainty. In this article we argue that this
uncertainty needs to be embedded with a correlation structure in order to be evaluated for aggregated values.
To this end, a novel methodology based on the use of Gaussian Processes to model the uncertainty associated
with the damage function is introduced. Assuming a spatial correlation structure, parameterized by the so
called decorrelation length scale, this framework is applied to estimate the EAD to roads in Portugal. The study
shows that the application of an appropriate decorrelation length scale is decisive to the estimated uncertainty
of the EAD. The proposed methodology may also be applicable to other types of hazards, if represented by
some hazard intensity parameter associated with a damage function.
1. Introduction

Data from EMDAT (2017) clearly show that the number of disasters
caused by natural hazards and the associated economic damages have
increased dramatically in the last three decades. This is mainly due
to the increase in number and intensity of weather-related events and
intense urbanization in areas that are exposed to natural hazards. A
robust and resilient transportation infrastructure is important for the
critical functions in a society, contributing to its economic and social
developments. Weather-related hazards such as extreme temperatures,
storms, intense precipitation, floods, erosion, landslides, and forest
fires pose significant risks to functionality of transportation networks.
Negative impacts include accidents, damage to infrastructure or to its
components, delays and malfunctioning of the transportation network.
Climate change is anticipated to lead to an escalation of such negative
impacts if no countermeasures are taken (Alfieri et al., 2015; Doll et al.,
2014). Assessing and managing these risks means that the need for
reliable techniques in damage assessment is more urgent than ever
before.

Recently, considerable effort has been devoted to the assessment
of damage induced by flooding to linear structures such as roads and
railways on both global and national scales (Van Ginkel et al., 2021;
Koks et al., 2019; Santamaria et al., 2021; Eidsvig et al., 2021). In spite
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of recent developments, this still remains a challenging task, subject
to considerable uncertainty. While quantification of this uncertainty
is of importance both to risk modelers and decision-makers, reliable
quantification of uncertainties usually depends on the introduction of
new and more complex modeling frameworks.

For a detailed analysis of local adverse effects of flooding on an
asset, specific simulations can be performed, for example modeling of
erosion of an embankment (Tsubaki et al., 2016) or erosion of a bridge
foundation (Tanasić et al., 2013). However, for consequence assessment
of a larger area, damage functions, which represent an average degree
of damage to an asset given the intensity of the hazard, are often used.
Damage functions (also called fragility functions or physical vulnerabil-
ity functions) express the damage degree or probability of damage as a
function of the intensity of the hazard and the structural resistance of
an asset to the loads/intensity. The structural damage is often described
as the degree of loss on a dimensionless 0–1 scale (Eidsvig et al., 2021).

In general, uncertainties are associated both with intensity param-
eters (e.g., depth, velocity, discharge, duration, and impact pressure
in the case of inland flooding) and physical characteristics of the
asset (material, design, maintenance history, etc.). Uncertainties re-
lated to the distribution of flood intensity parameters stems from
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many sources (Beven and Hall, 2014; Teng et al., 2017). Despite
being an active area of research for decades, high resolution accu-
rate flood modeling remains a significant challenge subject to both
theoretical and computational challenges. As such, a range of flood
modeling techniques exist, and the approach is typically chosen based
on the application under consideration (Teng et al., 2017; Bulti and
Abebe, 2020). Consequently, uncertainty, sensitivity to model param-
eters and robustness is an integral part of the field and a subject of
active research (Stephens and Bledsoe, 2020; Guerrero et al., 2013;
Domeneghetti et al., 2013). Quantification of this uncertainty, which
is commonly based on a Monte Carlo framework, is usually associated
with high computational costs, and still remains unfeasible for many
important applications. Recent approaches to deal with the problem
includes the use of statistical emulators (Donnelly et al., 2022; Yan
et al., 2021; Kabir et al., 2020). Let us also mention the role of climate
change and its impact on precipitation as another major source of
uncertainty (Arnell and Gosling, 2016; Asadieh and Krakauer, 2015;
Liu et al., 2023).

The work presented herein focuses on the uncertainty in dam-
age function(s) and its effect on the estimated risk. This source of
uncertainty can be seen as the lack of knowledge and information
about the physical properties of the asset, which affects its resilience
to flood-induced damages, or the uncertainty associated with flood
intensity parameters not accounted for by the damage function. From a
modeling perspective, this uncertainty may be quantified in terms of an
unknown factor henceforth referred to as residual vulnerability. Despite
its fundamental role in the assessment of risk, uncertainty associated
with damage functions, is often addressed in a less systematic and more
ad hoc manner.

In general, in risk assessment of transportation infrastructure, one
is not interested in the pointwise damage, but rather aggregated values
such as the EAD over a given geographical region, or maybe EAD
for a specific highway. To propagate the pointwise uncertainty of the
damage function to assess the uncertainty in aggregated values, it
is necessary to embed the uncertainty with a correlation structure,
e.g., impose a correlation structure on the residual vulnerability of
the assets. There exists a range of different approaches to model the
uncertainty associated with damage functions. A common method is
to describe the range of possible outcomes, i.e. by assigning the value
with so called uncertainty bands (Eidsvig et al., 2014; Jongman et al.,
2012; Westerhof et al., 2022). Computations based on uncertainty
bands often involves the use of heuristic distributions, like the trian-
gular distribution, or the PERT distribution. This common framework
lacks a simple well defined way of embedding spatial correlations.
Consequently, most damage assessments based on such descriptions
do not embed any kind of spatial correlation except the one imposed
by the spatial resolution of the computational procedure. A second
method to model uncertainty, which is standard in statistical modeling,
is to include noise with a given parametric distribution. Given that
the noise is normally distributed, this second type of models allow for
the embedding of a spatial correlation structure through the use of
Gaussian Processes.

While the correlation, of the residual vulnerability at two different
locations, could in principle depend on the similarity with respect
to properties such as construction type, ground conditions and level
of maintenance we assume that the correlation is only dependent on
spatial distance. This is partially justified as the mentioned properties
are also spatially correlated. Another physical effect leading to spatial
correlations is the reduced resilience of a damaged structure. To inves-
tigate how the spatial correlation of the residual vulnerability impacts
the estimated uncertainty of the EAD, the proposed model is applied
to estimate the EAD to roads in Portugal using different decorrelation
length scales (See Eq. (2.3)).

Although there do exist some studies that might shed some light on
the spatial correlation, e.g. Kellermann et al. (2015), we have not been
2

able to find studies specifically addressing the assessment of the spatial
variation of the damage given flood intensity parameters. However,
there do exist alternative approaches to the embedding of the spatial
correlation. Let us in particular mention the use of the moving split-
window technique in Chen et al. (2019). See also the three types of
dependence evaluated in Egorova et al. (2008).

The uncertainty related to flood intensity parameters is not con-
sidered in this work. However, the framework developed herein is a
framework for modeling the uncertainty associated with the damage
function, which may naturally be applied in conjunction with other
approaches to include the uncertainty associated with flood intensity
parameters. The application example within this paper focus on in-
land flooding. However, the core of the scope and novel methodology
proposed in this paper is universal to the hazard type and may be
considered as long as one has (i) the spatial distribution of some hazard
intensity parameter and (ii) a relation between the hazard intensity
parameter and the functional or structural loss of the asset (damage
function). In such cases, modeling assumptions regarding the functional
form of the damage function, and the suitability of modeling the
residual vulnerability using a Gaussian Process are the key conditions
which determines the applicability of the proposed methodology.

2. Material and methods

2.1. Estimating damage: The computational framework

To estimate EAD to a road segment due to flooding we apply a
damage function/curve associating the intensity of the flood with the
inflicted damage. In general, except for electrical installations, one
may expect the degree of damage to transportation infrastructure to
be dependent on the duration of the flooding. However, to simplify
matters, we consider maximal flood intensity 𝐼 over a given time period
(e.g, a year). As mentioned, in addition to flood intensity, the inflicted
damage will be dependent on a range of other, unknown, factors
related to the asset’s resilience to flood damages. To account for these
unknown effects, we include a second random field  , associated with
the residual vulnerability of the asset so that the (pointwise) damage
𝐷 ∈ [0, 1] is given as a function 𝐷 = 𝐷(𝐼, ), where 𝐷 = 0 indicates no
damage, and 𝐷 = 1 indicates total loss (e.g., nothing left of value). In
statistical terms, the field  is simply a representation of the residuals
associated with the damage function. As such, reducing the residual
field  by including relevant features, would improve predictions and
reduce uncertainty. The total damage (TD) of a segment 𝑆 is given by
the line integral

TD𝑆 = ∫𝑆
𝐷(𝐼(𝑥), (𝑥)) 𝑑𝑠, (2.1)

nd measured in the unit of length. Let 𝜀 be a realization of the random
ield  . The expected (annual) damage (EAD) of the segment 𝑆 may be
xpressed as a function of the realization 𝜀 according to

AD𝑆 (𝜀) = E
[

TD𝑆 |
]

(𝜀) = ∫𝑆 ∫

∞

0
𝐷(𝑖, 𝜀(𝑥)) 𝑑𝐼 (𝑥, 𝑖) 𝑑𝑠, (2.2)

here 𝐼 (𝑥, 𝑖) = 𝑃 (𝐼(𝑥) ≤ 𝑖) is the cumulative distribution function of
(𝑥). The right hand side of (2.2) may be approximated by applying
range of flood maps associated with different return periods (see

ppendix). A graphical presentation of the estimation of EAD𝑆 as a
andom variable associated with Eq. (2.2) is displayed in Fig. 1. To sam-
le realizations 𝜀 of the random field  , we assume that (𝑥1),… , (𝑥𝑛)
s multivariate Gaussian for any finite set of points {𝑥1,… , 𝑥𝑛} with a
ovariance structure specified by a suitable kernel 𝑘. To pick a simple
nterpretable structure we apply the exponential covariance kernel

(𝑥, 𝑦) = 𝜎2𝑓 exp
(

−
|𝑥 − 𝑦|

𝓁

)

, (2.3)

here 𝓁 is the spatial decorrelation length scale and 𝜎𝑓 is the standard
deviation of the field.
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Fig. 1. The computation of expected annual damage according to Eq. (2.2). Each curve at the center represents the expected annual damage per meter at location 𝑥 (EAD(𝑥)) for
a given realization of the random field  .
Table 1
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Fig. 2. Distributions of damage sampled according to the PERT distribution using the
bounds from Table 1 for the dynamic flood regime i.e, 𝑣 > 1.

2.2. A continuous spatial stochastic damage function

Next, we assess the problem of specifying a damage function 𝐷.
Suppose we have a set of observed values of the flood depth (height)
ℎ𝑖, velocity 𝑣𝑖 and associated damage 𝑑𝑖 for 𝑥1,… , 𝑥𝑁 different spatial
locations. The problem of specifying 𝐷 is then a typical regression
problem. First we note that there are certain properties that the damage
function should satisfy:

1. 𝐷 has to take values in [0, 1].
2. 𝐷 has to be monotone in both parameters.
3. 𝐷 is zero when height and velocity are zero.

Property 1 is not suitable for a linear regression and Property 3 is
not suitable with regards to additive noise and so we have to make
some adjustments in order to arrive at a suitable model. To ensure
Property 1 we transform the target according to

𝑑𝑖 =
𝑙𝑖

1 + 𝑙𝑖
⇔ 𝑙𝑖 =

𝑑𝑖
1 − 𝑑𝑖

. (2.4)

Then we try to establish a linear model 𝐼 predicting the transformed
target 𝑙 as a function of ℎ, 𝑣 and possibly some nonlinear terms ℎ𝑣
(momentum) and ℎ𝑣2 (kinetic energy). To make sure that zero is being
3

m

Range of the induced damage on roads as a function of depth ℎ [m] and velocity
𝑣 [m∕s].

Velocity 𝑣 < 1 𝑣 > 1

depth ℎ < 0.5 0.5 < ℎ < 2 2 < ℎ ℎ < 0.5 0.5 < ℎ < 2 2 < ℎ

Minimum 0.0000 0.001 0.05 0.0000 0.050 0.10
Mode 0.0001 0.010 0.10 0.0500 0.100 0.45
Maximum 0.0500 0.050 0.20 0.1000 0.450 0.80

apped to zero we set the intercept to zero, cf. Property 3. Making sure
oefficients are non-negative and using a multiplicative non-negative
oise it follows that properties 1,2 and 3 are satisfied. To be more
pecific, we assume the following function form for 𝑙:

𝑖 = 𝐼(ℎ𝑖, 𝑣𝑖)𝑒𝜀𝑖 , where 𝐼(ℎ, 𝑣) = 𝛽1ℎ + 𝛽2𝑣 + 𝛽3ℎ𝑣 + 𝛽4ℎ𝑣
2. (2.5)

o fit the model 𝐼 we minimize ∑

𝜀2𝑖 , cf. Section 2.2.1. Given that 𝜀𝑖 is
ufficiently close to normal, we may try to fit a Gaussian Process  by
aximizing the likelihood of (𝑥𝑖) = 𝜀𝑖. It follows that we arrive at a

unctional form for the damage function 𝐷 = 𝐷(𝐼, ) given by

(𝐼, ) = 𝐼𝑒

𝐼𝑒 + 1
(2.6)

s we will explain below, we will not be able to fit the covariance
tructure of  due to lack of spatially structured data.

.2.1. Fitting the damage function
To assess a suitable damage function 𝐷 we have relied on vul-

erability relations available in the literature. Vulnerability relations
re used to express the degree of physical loss/material damage to an
sset. The Swiss Road Authorities provides guidelines for assessment
f material damage of roads caused by flooding (Bernard et al., 2012;
berndorfer et al., 2020). The guidelines divide the flood conditions

nto six different categories according to depth and velocity. The dam-
ge degree of the road segment is specified as a range, indicated
y a minimum, a mode (i.e, the most likely value) and a maximum
ssociated with each category of flood conditions. The values and
ategories are presented in Table 1. The dynamic part of the table
𝑣 > 1m∕s) is taken from (Oberndorfer et al., 2020, A6), while the
tatic part (𝑣 < 1m∕s) of the damage table was chosen in agreement
ith the values found in Bernard et al. (2012, p. 81).

In order to obtain a continuous stochastic damage function 𝐷 on
he form described by Eqs. (2.6) and (2.5), training data were sampled
ased on the bounds from Table 1. To this end we applied the PERT
istribution, which is conveniently defined by the minimum, mode and
aximum value. Fig. 2 shows the densities of the PERT distribution
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Fig. 3. Predictions of damage based on the continuous model (fitted) compared with sampled values based on Table 1 (thresholds) as a function of depth and velocity respectively.
Fig. 4. Scaled histogram with fitted normal distribution of the residuals 𝜀𝑖 associated
with the fitting of the continuous damage model to the sampled values from Table 1.

applied to the three different categories 0 < ℎ < 0.5, 0.5 < ℎ < 2 and
2 < ℎ for the case 𝑣 > 1 from Table 1. Comparing the PERT distribution
with a triangular distribution, it puts some more weight on the mode
value. This is clearly visible for the case (0.5 < ℎ < 2). The depth ℎ𝑖 and
velocity 𝑣𝑖 values were sampled from a flood map with a 1000 year
return period covering Portugal, cf. Section 2.3. To fit the function
based on depth values relevant to the flooded areas, the data set was
truncated at ℎ𝑖 > 6. The associated damage values 𝑑𝑖 was evaluated by
sampling from the PERT distribution according to Table 1 as described
above. In order to fit the coefficients we minimized the mean square
loss 𝛴𝑖𝜀2𝑖 . Comparing the loss of different models, we decided to reduce
the flexibility and ensure positive coefficients by setting 𝛽3 = 0. For the
remaining parameters we arrived at

𝛽1 = 0.0176, 𝛽2 = 0.0026, 𝛽4 = 0.0476. (2.7)

In Fig. 3, values sampled according to Table 1, labeled thresholds,
are compared with the fitted values of the continuous model. As
expected the continuous model impose a high degree of continuity with
4

respect to depth and velocity. It is worth noting that the fitted values
of the continuous model take on more extreme values at extreme flood
regimes. In particular, for high velocity values (i.e., 𝑣 > 2m∕s) the
continuous model predicts higher damage values. This does not appear
unnatural from a physical perspective, cf. Kreibich et al. (2009).

A histogram displaying the density of the associated residuals 𝜀𝑖
are shown in Fig. 4. We note that the density is close to normal
except from being slightly more peaked at zero and a little skew.
The standard deviation is estimated to 1.03. Is it justified to use the
standard deviation of these residuals for the standard deviation 𝜎𝑓 (See
Eq. (2.3)) of ? The residuals are both due to the discrepancy between
the continuous model and the thresholds in Table 1 and the variation
imposed by the uncertainty represented in the damage table. However
it does appear rational that the artificial big jumps present in the
damage table may also be accounted for in terms of uncertainty in the
continuous model. In Fig. 5 values sampled from the continuous model
using the estimated variance of the residuals are compared with values
sampled from the threshold model. The continuous model appears to
replicate the uncertainty in a satisfactory way, although maybe less so
regarding the more extreme values.

2.3. Estimating damage to roads in Portugal

As part of the Safeway project (Santamaria et al., 2021), the above
framework was implemented and applied to a set of flood maps cover-
ing Portugal. Fig. 6 shows a diagram of the implemented computational
flow.

The flood maps were downloaded through the webpage (SNIAmb,
2022). The data set consists of three different return periods 20,
100 and 1000, each with associated intensity parameters velocity and
depth. The flood maps have a spatial resolution of 30m by 30m.

The data on the linear infrastructures (i.e., roads) were downloaded
from the open access web platform Open Street Map database. The
OpenStreetMap (OSM) project was founded in the United Kingdom
in 2004 and is aimed at creating a free, world-wide geographic data
set. The focus is mainly on transport infrastructure (streets, paths,
railways, rivers), but OpenStreetMap also collects a multitude of points
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Fig. 5. Sampled values of damage based on continuous model with noise (sampled) compared with sampled values based on Table 1 (thresholds).
Fig. 6. A schematic drawing of the implemented computational flow associated with the calculation of EAD according to the framework described in Section 2.1. The boxes
represents data objects while the circles represent operations. The shaded boxes represents input data.
of interest, buildings, natural features and land use information, as well
as coastlines and administrative boundaries (Geofabrik GmbH, 2020).
The data are collected by project members using their GPS devices
and entered into the central database. The OSM can be considered
one of the most accurate open access databases on linear infrastruc-
ture. Some papers stated that OSM, was ca. 80% complete in January
2016 (Meijer et al., 2018; Barrington-Leigh and Millard-Ball, 2017).
The OSM database classifies roads into 5 types: highway, primary,
secondary, tertiary, other roads. Highways comprise all major highways
and trunk roads. Primary roads are represented by all major regional
roads. Secondary roads as all major provincial and sub-national roads.
Tertiary roads are important local roads, often linking secondary or
primary roads with each other. In this study we have considered roads
classified as highway, trunk, primary, secondary and tertiary. The roads
classified as ‘‘other’’ have not been included in the analyses. Road and
5

railway segments classified as bridge in the attribute table, have been
excluded in the analyses. On the Geofabrik download server OSM data
are collected in large files, called extracts, organized by region (Geo-
fabrik GmbH, 2020). Processing of the OSM-extracts downloaded from
Geofabrik was carried out using the Osmium Library (Topf, 2022).

To evaluate the damage over road segments we needed to sample re-
alizations of the random field  . To this end we applied the exponential
covariance kernel defined in Eq. (2.3). Sampling from a large random
field is computationally expensive. To minimize the computational
expense, we made sure to only sample values along the roads exposed
to flooding and use a pixel size of 200m by 200m. In Fig. 7 two samples
of the random field  with different decorrelation length scales are
displayed. It is clear from the figure that spatially close points tend to
have similar values. As expected, the sample generated using a spatial
decorrelation length scale of 1000m displays much slower variation
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Fig. 7. Detail of two sampled random fields with different decorrelation length scale 𝓁 over a road network. The random fields are displayed by a green to red color scale
representing values in the range (−3, 3). At the center of the maps are the city of Loures.
than the sample generated with a spatial decorrelation length scale
of 100m. Note that the low resolution of the sampled field implies
a slightly higher correlation between close points in the calculations
compared with the mathematical model. This bias is in particular
affecting the case 𝓁 = 100m. For each segment, damage was evaluated
at each coordinate as downloaded from the OSM database. While the
distance between the coordinates of each segment vary considerably,
most are below 100m. Consequently, in addition to a finer resolution
on the sampled field, it would be necessary to refine the subdivision
of the segments by adding additional coordinates to study the effect of
decorrelation length scales below 100m.

3. Results and discussion

Fig. 8 displays box-plots of expected annual damage (EAD) mea-
sured in meter for Portugal (8(a)) and the District of Santarém (8(b)).
EAD is estimated using different decorrelation length scales for the
residual vulnerability field  and classified according to road type. A
considerably larger uncertainty is associated with a larger decorrelation
length scale. Further, the distribution is increasingly skew. While the
mean remains stable, the mode tends to decrease to compensate for an
increasingly heavier tail.

Regarding the difference between the levels of aggregation, the
dependency on the decorrelation length scale 𝓁 in the chosen range
is more pronounced for the District of Santarém than for Portugal.
The District of Santarém has a maximal diameter of about 140 km,
indicating that for 𝓁 = 10 km we may not expect a large averaging
effect. This is in particular true as the most affected areas are relatively
concentrated. Portugal has a maximal diameter of about 600 km and one
should expect a substantial averaging effect even for 𝓁 = 10 km, making
the uncertainty less dependent on the length scales in the selected
range. This is clearly the case when considering relative uncertainty,
i.e., scaled by the mean or mode.

Some understanding of the impact of the scale of the spatial decor-
relation length on the estimated uncertainty of the EAD may be derived
from a formal limit argument. In particular, why an increased spatial
decorrelation length is associated with a larger uncertainty. Consider a
network of roads in a region 𝑅 and split the network into 𝑁 ‘‘small’’
segments 𝑆𝑖 of equal length. Let 𝑥𝑖 ∈ 𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑁 . Then

EAD𝑅 = E
[

TD𝑅 |
]

≈
𝑁
∑

𝑖=1


𝑁 ∫

∞

0
𝐷(𝑖, (𝑥𝑖))𝑑𝐼 (𝑥, 𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
, (3.1)
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(𝑥𝑖)
where  denotes the total length of the structure, (𝑥) ∈ [0, 1] is the
pointwise expected annual damage at location 𝑥 and 𝑁 is sufficiently
large. It follows that the variance may be approximated by

Var
(

EAD𝑅
)

≈ 2

𝑁2

𝑁
∑

𝑖,𝑗=1
Cov

(

(𝑥𝑖),(𝑥𝑗 )
)

= 2

𝑁2

(

∑

𝑖
Var

(

(𝑥𝑖)
)

+
∑

𝑖≠𝑗
Cov

(

(𝑥𝑖),(𝑥𝑗 )
)

)

.

(3.2)

Note that the first sum grows linearly in 𝑁 while the second sum
grows as 𝑁2. Hence, if (𝑥𝑖) is independent of (𝑥𝑗 ) whenever 𝑥𝑖 ≠
𝑥𝑗 the variance would vanish as 𝑁 → ∞, effectively reducing the
estimated uncertainty to zero. A fact known as the law of large numbers.
This would be the effect of modeling  as a Gaussian white noise.
A modeling approach achieved by sampling independent 𝜀𝑖 for each
segment. Observe that the estimated uncertainty in this case will be
heavily dependent on the subdivision of the network quantified by 𝑁 .
Increasing the scale of the spatial decorrelation length will increase the
terms in the second sum and hence also the variance of EAD𝑅 and
effectively increase the estimated uncertainty also in the limit 𝑁 → ∞.

4. Conclusion

In this article we have established a continuous spatial stochastic
model for damage to linear structures due to flooding. The fundamental
parameter introduced in the model through the covariance kernel (2.3)
is the so-called spatial decorrelation length scale. The spatial decorre-
lation length scale determines the degree of correlation between the
residual vulnerability of the linear structure measured at two different
locations and their spatial distance.

Applying this model to assess the expected annual damage (EAD)
to roads in Portugal we have observed that the relative size of the
decorrelation length scale is decisive to the relative uncertainty of the
EAD. That is, if the uncertainty of the damage function is associated
with a short decorrelation length scale compared with the region of
interest, applying a highly uncertain damage function still yields a
relatively certain estimate of the EAD. Conversely, a small uncertainty
in the damage function, associated with a large relative decorrelation
length scale may lead to a considerable uncertainty in the EAD. Even
though the parameter is important for uncertainty estimates, it has
received little attention in the literature.

Due to the lack of spatially structured damage data, we have not
been able to assess the suitability of the applied model and in particular
its spatial structure. The collection of damage data in combination
with hydrodynamical back analysis of flooding events would enable a
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Fig. 8. Box-plots of expected annual damage (EAD) classified according to road type.
The figures are generated using 2000 samples of the random field  with decorrelation
length scale 𝓁 equal to 100,1000 and 10 000 meters. Whiskers are placed at the 2.5
and 97.5 percentile.

statistical assessment of the model parameters. An appropriate treat-
ment, allowing uncertain model parameters and the inclusion of both
data and prior knowledge to assess their values, may be achieved in
a Bayesian framework (Gelman et al., 2015; Jalayer et al., 2023).
However, the use of prior knowledge to restrict the range of plausible
values for the spatial decorrelation length scale depends on a clear
understanding of the effects it represents. As mentioned before, we
expect the reduced resilience to flooding associated with damaged
structures to lead to spatial correlations. Another contribution stems
from properties affecting the assets resilience to flood-induced damages
or spatial correlations associated with hazard intensity parameters,
not considered in the damage function, like duration of the flooding
event. While the first effect is most likely associated with a shorter
decorrelation length scale, the second effect, which may be reduced
by the inclusion of relevant properties in the damage function, is likely
to be associated with larger decorrelation length scales. To account for
7

different contributions, associated with different decorrelation length
scales, it is possible to replace the single kernel in Eq. (2.3) with a
weighted sum, representing the contribution of the different effects.
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Appendix. Approximating expected annual damage

In Section 2.1, Eq. (2.2) the EAD of a segment 𝑆 is expressed as
an integral with respect to the cumulative distribution function 𝐼 of
the maximal (annual) flood intensity 𝐼 . To approximate the integral
we apply a set of flood maps associated with a range of return periods
𝑛1 < ⋯ < 𝑛𝐽 . Let {𝑖𝑛𝑗 }

𝐽
𝑗=1 be the associated flood maps satisfying

𝑃 (𝐼(𝑥) > 𝑖𝑛(𝑥)) =
1
𝑛
, (A.1)

for (almost) all 𝑥 and all 𝑛 ∈ {𝑛1,… , 𝑛𝐽 } so that 𝑖𝑛(𝑥) is the intensity
associated with the return period 𝑛 at location 𝑥. By definition of the
cumulative distribution function

𝐼 (𝑥, 𝑖𝑛) = 1 − 𝑃 (𝐼(𝑥) > 𝑖𝑛(𝑥)) = 1 − 1
𝑛
. (A.2)

Let us split the integral in Eq. (2.2) according to

∫

∞

0
𝐷(𝑖, 𝜀(𝑥)) 𝑑𝐼 (𝑥, 𝑖) =

∫

𝑖𝑛1

0
𝐷(𝑖, 𝜀(𝑥)) 𝑑𝐼 (𝑥, 𝑖) + ∫

𝑖𝑛𝐽

𝑖𝑛1

𝐷(𝑖, 𝜀(𝑥)) 𝑑𝐼 (𝑥, 𝑖)

+∫

∞
𝐷(𝑖, 𝜀(𝑥)) 𝑑𝐼 (𝑥, 𝑖)
𝑖𝑛𝐽

https://github.com/norwegian-geotechnical-institute/gp-flood-damage-aggregator
https://github.com/norwegian-geotechnical-institute/gp-flood-damage-aggregator
https://github.com/norwegian-geotechnical-institute/gp-flood-damage-aggregator
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T

∫

=∶ 1 + 2 + 3. (A.3)

Given that the return period 𝑛1 is sufficiently small, the associated
intensity 𝑖𝑛1 is assumed to be so small that the damage is negligible.
This lower limit is typically set with a reference to the assets general
flood protection. Consequently 1 is assumed to be zero. Similarly 3 <
1∕𝑛𝐽 so that by taking 𝑛𝐽 sufficiently large 3 may also be neglected.

o evaluate 2 we apply the trapezoidal rule to obtain

𝑖𝑛𝐽

𝑖𝑛1

𝐷(𝑖, 𝜀(𝑥)) 𝑑𝐼 (𝑥, 𝑖) =
𝐽−1
∑

𝑗=1
∫

𝑖𝑛𝑗+1

𝑖𝑛𝑗

𝐷(𝑖, 𝜀(𝑥)) 𝑑𝐼 (𝑥, 𝑖)

≈
𝐽−1
∑

𝑗=1

1
2
(𝐷(𝑖𝑛𝑗 , 𝜀(𝑥)) +𝐷(𝑖𝑛𝑗+1 , 𝜀(𝑥)))(𝐼 (𝑥, 𝑖𝑛𝑗+1 ) − 𝐼 (𝑥, 𝑖𝑛𝑗 )),

(A.4)

where we note that

(𝐼 (𝑥, 𝑖𝑛𝑗+1 ) − 𝐼 (𝑥, 𝑖𝑛𝑗 )) =
1
𝑛𝑗

− 1
𝑛𝑗+1

. (A.5)
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