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1  |  INTRODUCTION

Geomorphology, the description and classification of the 
Earth surface and of the processes that shaped it, has 
traditionally been focused on emerged landforms due 
to limited data availability offshore. Over the last cen-
tury, continuous progress in technology- enabled imaging 
the seafloor with an increasing level of detail and sup-
ported advancement in the understanding of submarine 

landforms (Micallef et al.,  2018). Nevertheless, most of 
the ocean floor remains poorly surveyed, with large por-
tions of submarine landforms still unobserved and non- 
documented (Wölfl et al., 2019). As a result, the origin and 
nature of numerous marine sedimentary features are still 
uncertain, which has direct consequences for the interpre-
tation of ancient strata that rely on modern analogues.

Tropical shallow- water coral reefs reaching the sea 
level have been documented by European scientists since 
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Abstract
Linear buildups formed in tropical carbonate environments are often interpreted 
as bioconstructed reefs. Nevertheless, coastal processes can also form extensive 
sedimentary ridges exhibiting buildup morphologies. This study investigates two 
Miocene ridges developed along the Australian North West Shelf using 3D seis-
mic and well data. Ridge 1 is ca. 30 m thick and >60 km long, and it is made of 
foraminiferal pack- grainstones. It protects a lagoon with pinnacle morphologies. 
Ridge 2 is ca. 150 m thick and >80 km long. It is composed of quartz sand forming 
lobes. Both ridges have a continuous curvilinear front and are in a mid- shelf set-
ting. They mimic the modern Australian coastline. It is then proposed that Ridge 
1 is either: (1) a barrier reef developed on a drowned shoreline, or (2) stacked 
carbonate aeolianites and beachrocks acting as a barrier. Ridge 2 is interpreted as 
stacked deltaic sands. This study demonstrates that lithified and buried coastal 
features of carbonate and siliciclastic nature can form extensive ridges exhibiting 
buildup morphologies. It is proposed that ridges formed by stacked coastal fea-
tures are overall continuous with a curvilinear front, while reefal ridges are more 
discontinuous and exhibit deeper and more stable passes.
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Cook's voyage in the Pacific in 1769 (Stoddart, 1976). They 
have since attracted tremendous research effort and rep-
resent some of the most studied marine features to the 
point of relagating to the background other tropical envi-
ronments (Longhurst & Pauly, 1987). Today, their geomor-
phology and locations are well- known from the scientific 
community through published mapping surveys (e.g., 
Maxwell,  1968; UNEP- WCMC et al.,  2021) and satellite 
images publicly available online (e.g., Sentinel, Landsat). 
Interest for fossil reefs (sensu Lowenstam, 1950) emerged 
in Europe following the publication of Darwin's treatise 
(1842), with for example the term reef reportedly first 
used in a geological sense by Murchison (1847) to describe 
Silurian strata (Cumings & Shrock, 1928). Multiple pub-
lications on ancient reefs dominantly based on a zoologi-
cal approach followed during the late 19th and early 20th 
century. The study of ancient reefs has further developed 
after the 1950's— and expanded to their study through 
seismic reflection and well data— when the petroleum 
industry identified their hydrocarbon reservoir properties 
(Montaggioni & Braithwaite,  2009). Hence, researchers 
working in carbonate sedimentology and stratigraphy are 
now well aware of the ability of corals and other organ-
isms to build seafloor ridges.

While it is becoming well documented that non- 
reefal accumulations, such as stacked aeolianites and 
beachrocks, also have the ability to form bathymetric highs 
on the modern seafloor (e.g., Brooke et al., 2017; Bufarale 
et al., 2019; Green et al., 2020; Lebrec et al., 2022a, 2022b; 
O'Leary et al., 2020; Passos et al., 2019) and can mislead-
ingly exhibit reefal morphologies in seismic- reflection 
data (Bubb & Hatlelid, 1977; Salzmann et al., 2013), pre- 
Quaternary carbonate aeolianites and other relict coastal 
features are rarely documented in the geologic literature 
(e.g., Abegg & Handford, 2001; Dodd et al., 2001; Kindler & 
Davaud, 2001; Loope & Abegg, 2001; McKee & Ward, 1983; 
Smith et al., 2001), and non- reefal carbonate buildups are 
seldom described by seismic interpreters. This is partic-
ularly puzzling given the ability of drowned coastal fea-
tures to exhibit buildup morphologies and to form both 
carbonate and siliciclastic barrier complexes— composed 
of beachrocks, aeolianites and other coastal sedimentary 
deposits preserved through early cementation— forming 
seafloor ridges enclosing lagoons, bays or estuaries (e.g., 
Alcántara- Carrió et al., 2013; Brooke et al., 2010; De Falco 
et al.,  2015; Gardner et al.,  2007; Lebrec et al.,  2022a; 
Locker et al., 1996; Mellett et al., 2012; Passos et al., 2019; 
Sade et al., 2006; Wenau et al., 2020). As an example, the 
islands of the Bahamas are largely formed by aeolianites 
(Carew & Mylroie, 2001; Nelson, 1853). It is also well doc-
umented that many ancient rimmed shelves do not have 
reefs at their shelves, but high energy shoals (James & 
Mountjoy, 1983). This begs the questions, what is the true 

nature of seafloor ridges found in ancient strata and how 
can we discriminate reefal ridges from drowned coastal 
features?

In this context, the North West Shelf (NWS) of Australia, 
which is surveyed by >325,000 km2 of high- resolution 3D 
seismic data (Paumard, Bourget, Lang, et al., 2019), is an 
ideal location to study the origin of seafloor ridges formed 
in tropical carbonate environments. Indeed, a ca. 2000 km 
long buried seismic reef province, composed of ridges 
and circular buildups, respectively, interpreted as barrier 
reefs and atolls, developed during the Miocene (Anell & 
Wallace, 2020; McCaffrey et al., 2020; Ryan et al., 2009). 
The scientific objective of this study is to investigate the 
nature of two Miocene ridges buried along the Northern 
Carnarvon Basin area (southernmost part of the NWS) 
using 2D and 3D seismic geomorphology, complemented 
by the analysis of available well data and seismic profiles 
(Figure  1). The results of this study are then utilised to 
support a broader discussion on the ability of drowned 
coastal features— such as beach ridges, coastal aeolianites 
and other geological objects formed along palaeoshore-
lines through wave, tidal, fluvial, and aeolian process-
es— to form continental margin- scale seafloor ridges, 
and on their potential morphological similarities to reefal 
buildups. A list of criteria for differentiating reefal ridges 
from coastal ridges is then presented and discussed.

2  |  GEOLOGICAL SETTING

The North West Shelf (NWS, Purcell & Purcell, 1988) is 
a ca. 2400 km long passive continental margin located 
along the north- western border of Australia, between ca. 
11 and ca. 22°S, that has been dominated by carbonate 
sedimentation since the Late Eocene (Apthorpe,  1988). 

Highlights

• Drowned coastal ridges and coral reefs present 
geomorphological similarities.

• Carbonate coastal features are rarely described 
in pre- Quaternary studies.

• Coastal aeolianites and stacked shorelines can 
build linear ridges 100's km long and 10's m 
thick.

• Drowned reefs present discontinuous and 
patchy morphologies associated with deep 
passes.

• Coastal ridges present continuous curvilinear 
morphologies, associated with shallow and mo-
bile passes.

 13652117, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bre.12774 by A

nne G
unn L

yen G
reen - D

okum
entsenteret N

orges G
eotekniske Institutt , W

iley O
nline L

ibrary on [30/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 3
EAGE

RIERA et al.

The margin is divided in basins and sub- basins formed 
through multiple rifting and aborted rifting events be-
tween the Cambrian and the Early Cretaceous (Keep 
et al., 2007; Purcell & Purcell, 1988; Yeates et al., 1987). 
These basins were filled and buried by thick sedimentary 
units and have had a limited impact on Cenozoic sedimen-
tation (Apthorpe, 1988). Basin and sub- basins names are 
however often used in Cenozoic strata studies to designate 
geographic areas and are here used accordingly. While the 
NWS has been dominantly in a passive state during the 
Cenozoic (Apthorpe, 1988; Marshall & Lang, 2013), local-
ised structural inversion events occurred from ca. 25 Ma 
to present, with an apex during the late Miocene (Cathro 
et al., 2003; Keep et al., 2007; Keep & Haig, 2010; Malcolm 
et al., 1991; Saqab et al., 2017).

From the late Oligocene to early Miocene, an extensive 
carbonate ramp was covering the NWS (Apthorpe, 1988; 
Cathro et al.,  2003; Moss et al.,  2004; Rankey,  2017). It 
was formed dominantly of micropackstones and foramin-
iferal wacke- packstones (Riera et al.,  2022), respectively 
designated as Mandu Limestone and Tulki Limestone in 
the Northern Carnarvon Basin area (Romine et al., 1997). 
Subsequently, at the end of the early Miocene (mid/late 
Burdigalian), small aggradational reefal buildups locally 
formed along this ramp in the northern part of the NWS 
(i.e., Timor Sea and Browse Basin; Belde et al.,  2017; 
Gorter et al.,  2002; Rosleff- Soerensen et al.,  2012; Saqab 
& Bourget, 2016; MioR- 0 on Figure 2). During the middle 
Miocene, from 16 Ma onward, ridges of inferred reefal or-
igin, locally associated with circular buildups, developed 

over ca. 2000 km, thus evolving the ramp into a rimmed 
platform (Anell & Wallace,  2020; Belde et al.,  2017; 
Bradshaw et al.,  1988; Collins et al.,  2003; Gorter 
et al.,  2002; Jones, 1973; McCaffrey et al., 2020; Romine 
et al.,  1997; Rosleff- Soerensen et al.,  2012, 2016; Ryan 
et al.,  2009; Young et al.,  2001). These ridges extended 
southward to the Cape Range anticline, which was not yet 
formed (McCaffrey et al., 2020; Young et al., 2001; Figure 1, 
MioR- 1 and MioR- 2 on Figure  2). The Miocene ridges 
present there, which are the focus of this study, are only 
documented from 2D seismic lines (McCaffrey et al., 2020; 
Young, 2001), as 3D seismic geomorphologic studies are 
limited to the Browse Basin and Timor Sea, in the north-
ernmost portion of the NWS (Belde et al.,  2017; Gorter 
et al., 2002; Rankey, 2020; Rosleff- Soerensen et al., 2012; 
Saqab & Bourget, 2016; Thronberens et al., 2022; Van Tuyl 
et al., 2018a, 2018b, 2019), where both ridges and circu-
lar buildups are present. The presence of middle Miocene 
outcrops of a tropical lagoon with corals in the Cape Range 
anticline, designated as Trealla Limestone and adjacent to 
the ridges studied here (Figure 1), indicates that the envi-
ronment was warm, and possibly favourable to coral reef 
development (Riera et al., 2019, 2021).

Miocene reefal ridges are not documented in strata 
younger than ca. 10 Ma, but buildup development may 
have been locally sustained in the northern part of the 
NWS, with Rowley Shoals, Scott Reef, Seringapatam 
Reef and Ashmore Reef possibly being modern survi-
vors of the Miocene buildups (McCaffrey et al.,  2020;  
Ryan et al.,  2009). In the southern part of the NWS 

F I G U R E  1  Location map presenting 
the two Miocene buried ridges in 
relation to the modern Australian 
coastline. Regional elevation is from 
Whiteway (2009), location of the 
Ashburton River is based on Crossman 
and Li (2015) and extent of the middle 
Miocene reef track follows McCaffrey et 
al. (2020).
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(Northern Carnarvon Basin area), the shelf was exposed 
and karstified at ca. 12 Ma, and an episode of mixed 
siliciclastic- carbonate sedimentation established during 
the late middle/late Miocene, leading to the deposition of 
coastal quartz sandstones locally forming deltas and barri-
ers, that are now partially dolomitised (i.e., Bare Formation 
and Pilgramunna Formation; Condon et al., 1955; Heath & 
Apthorpe, 1984; Hocking et al., 1987; Sanchez et al., 2012; 
Tagliaro et al.,  2018). Those mixed deposits are overlain 
by the detrital carbonates of the Delambre Formation, 
that locally interfingers with the siliciclastic intervals of 
the Exmouth Sandstone (Hocking et al., 1987). Sustained 
siliciclastic influx in the Northern Carnarvon Basin area 
ceased at ca. 2.4 Ma (early Pleistocene) possibly due to cli-
matic changes (Tagliaro et al., 2018).

3  |  DATA AND METHODS

Seismic interpretation is based on the analysis of a seismic 
volume of ca. 11,000 km2 extracted from the much broader 
PGS Carnarvon MegaSurvey (Edwards et al., 2006), and on 
the re- interpretation of the regional 2D seismic line s136- 
05, previously described in McCaffrey et al.  (2020) and 
Young et al. (2001). The seismic volume has a spatial reso-
lution of 50 × 50 m, and a vertical sampling rate of 4 ms. 
Seismic interpretation was performed in PaleoScan™ 
software, in two- way time (TWT), and hundreds of seis-
mic horizons representing chronostratigraphic surfaces 
were generated following the workflow from Paumard 
et al. (2019a).

To complement the seismic data analysis, well cuttings, 
side- wall cores (SWC) and thin sections from the offshore 
well Ramillies- 1 (Zaunbrecher,  1992) were analysed 
both at a macro and micro scale. Carbonate texture de-
scription follows the classification from Dunham (1962), 
with the terms dominant, abundant, common, few and 
rare indicating that the grains represent respectively 
>90%, 50– 90%, 10– 50%, 1– 10% and <1% of the rock vol-
ume. Grain grades, sphericity and sorting follow respec-
tively Wentworth  (1922), Powers  (1953) and Pettijohn 
et al. (1972). Age calibration is based on the review of the 
well completion reports and re- analysis of foraminiferal 
content of the wells Pyrenees- 1, Macedon- 1 and Macedon- 3 
(Riera et al.,  2023). In order to integrate well data with 
seismic data, well data were loaded in PaleoScan™ and 
converted to time domain using publicly available sonic 
velocity logs (e.g., Katelis & Hernandianto, 1991).

4  |  RESULTS

4.1 | Seismic stratigraphic framework

The two buried ridges are present in a mid- shelf setting. 
They are overlying the Oligo- Miocene prograding clino-
forms of the Mandu Limestone and Tulki Limestone that 
form an early Miocene distally steepened ramp (Figure 3, 
Riera et al., 2022). The ridges are present in two distinct 
stratigraphic intervals. The older ridge, Ridge 1, is devel-
oped within the regional seismic sequence Mi5 (Riera 
et al., 2023). The identification of Orbulina suturalis and 

F I G U R E  2  Chronostratigraphic 
framework of the offshore seismic units. 
N- zones follow Blow (1969) calibrated 
using Wade et al. (2011), Australasian 
‘Letter- stages’ follow BouDagher- 
Fadel (2018), stratigraphy of the Northern 
Carnarvon Basin is modified from Kelman 
et al. (2013), seismic sequences follow 
Riera et al. (2023), nomenclature and 
ages of Miocene reefs along the North 
West Shelf follow McCaffrey et al. (2020). 
Abbreviations for the sub- basins of 
the Northern Carnarvon Basin (from 
south- west to north- east): Ba, Barrow; Be, 
Beagle; Da, Dampier; Ex, Exmouth.
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Praeorbulina glomerosa at the very base of the sequence 
in the well Pyrenees- 1, and of the larger foraminifera 
Lepidocyclina (Nephrolepidina) and Flosculinella sp. 
around the top of the sequence, respectively from the 
wells Macedon- 3 and Ramillies- 1, indicate an accumula-
tion between 15.10 Ma (base of the planktonic foraminif-
eral N9 zone; Blow, 1969; Wade et al., 2011) and ca. 13 Ma 
(last known occurrence of Flosculinella sp., BouDagher- 
Fadel,  2018). Hence, Ridge 1 is time equivalent to the 
coral- rich tropical lagoonal limestones outcropping in the 
Cape Range anticline (Riera et al., 2021) and to the seismic 
barrier reef ‘MioR- 2’ (McCaffrey et al., 2020; Figure 2).

Ridge 2 is embedded in the much thicker regional seis-
mic sequence Mi6 (Riera et al.,  2023), which reaches a 
thickness of ca. 250 m at Ramillies- 1 and is composed of 
sub- parallel to chaotic seismic reflectors draping the thin 
seismic sequence bearing Ridge 1 (Figure 3). The minimum 
age of this sequence is poorly constrained, but it is consid-
ered older than 5.48 Ma because it is overlain by deposits 
accumulated during the planktonic foraminiferal N18 zone 
in the well Macedon- 1 (Rexilius & Powell, 1994). As a result, 
Ridge 2 belongs to a seismic sequence time equivalent to the 
Bare Formation and Pilgramunna Formation. As with Ridge 
1, Ridge 2 appears to be time equivalent to seismic barrier 
reef ‘MioR- 2’, but it is younger than the tropical lagoonal 
limestones outcropping in the Cape Range anticline.

4.2 | Morphology, seismic facies and  
lithology

4.2.1 | Ridge 1

Ridge 1 is a high- amplitude feature associated with un-
derlying velocity anomalies. It is formed by a single 

sub- horizontal to undulating seismic reflection  that lo-
cally becomes chaotic to transparent (Figure  4) and has 
a height of ca. 20 to ca. 40 ms TWT. Ramillies- 1 intersects 
Ridge 1 between ca. 810 and ca. 840 mKB (metres meas-
ured below Kelly Bushing Height), in an area where Ridge 
1 has a height of ca. 30 m. The limited height of Ridge 1 
with respect to the seismic vertical resolution prevents any 
detailed analysis of its seismic facies from seismic profiles.

Display of seismic amplitudes along the horizons 
passing through Ridge 1 reveals that the bright horizon 
forming the ridge and time- equivalent landward strata 
are covering an area at least 60 km long and 5.5 km wide. 
Ridge 1 has a crenulate, continuous front, which is com-
posed of concave, convex, straight and V- shaped features 
(Figure 5a– c). The front of Ridge 1 in itself does not par-
ticularly stand out from the rest of the structure, but it 
is well recognisable as it marks the transition from the 
high- amplitude seismic reflectors forming Ridge 1 to the 
low- amplitude reflectors present seaward of the ridge. 
The seismic character of Ridge 1 is also remarkable as the 
feature is covered with small, <100- to- 400- m- wide, high 
amplitudes, rounded- to- ovoid, evenly spaced pinnacle 
morphologies (Figure 5). Examination of seismic profiles 
intersecting those features show that they are created 
by undulations of the seismic reflectors forming Ridge 1 
(Figure  5d). The total length of Ridge 1 is unknown, as 
it extends beyond the limit of the data towards the north 
west and is masked by a seismic artefact from Ridge 2 both 
southward and eastward.

One single SWC, Ramillies- 1 810 mKB, is available 
from Ridge 1 (Figures 4b and 6a– c). It is composed of a 
foraminiferal packstone to grainstone with dominantly 
fine- to- medium size carbonate bioclasts, and rare granule 
to pebble- size carbonate lithoclasts. Quartz grains were 
not observed. Bioclasts include porcelaneous foraminifera 

F I G U R E  3  Un- interpreted (a) and interpreted (b) seismic line highlighting the general stratigraphic framework (modified from Riera 
et al., 2023). Note that Ridge 1 is developed within the sequence Mi5, that is time equivalent to the outcropping tropical lagoon, while Ridge 2 
is within the sequence Mi6, that is time equivalent to the Bare Formation (see Figure 2). Data courtesy of PGS.
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(few small miliolids, few broken and entire juvenile to adult 
Sorites sp.), hyaline foraminifera (common Amphistegina 
sp., few undifferentiated small hyaline foraminifera, rare 
acervulinids), rare, agglutinated foraminifera, few debris 
of coralline algae, few mollusc debris and few echinoderm 
debris. A micritic matrix is locally present. No corals or 
coralgal crust were observed from well cuttings.

4.2.2 | Ridge 2

Ridge 2 (Figures 4 and 7) is formed by undulating seismic 
reflectors of high- to- medium amplitudes, and locally pre-
sents a mound- like morphology along 2D seismic profiles, 
with bi- directional downlaps on both sides (Figure 7e). As 
with Ridge 1, Ridge 2 induces velocity pull- ups in under-
lying strata. Overall, Ridge 2 has a height of ca. 50 to ca. 
100 ms TWT and is therefore much thicker than Ridge 1. 
At Ramillies- 1, where its actual height is measurable, it 

extends from 560 to 710 mKB, and therefore has a height 
of 150 m (Figure 4b).

Seismic amplitude maps along horizons passing through 
Ridge 2 reveals a feature at least 80 km long (Figure 7). The 
front of Ridge 2 is overall curvilinear and continuous, but 
the morphology of the ridge front varies between its lower 
(Figure 7a), middle (Figure 7b) and upper (Figure 7c) inter-
vals. At its base, Ridge 2 is characterised by the presence of 
three asymmetric convex- outward features developing lobes 
and cuspate morphologies (Figure 7a,d), with the larger one 
ca. 5 km long and ca. 10 km wide. Those convex- outward fea-
tures become less and less prominent in younger strata (i.e., 
central and upper part of Ridge 2; Figure 7b,c). Smaller high- 
amplitude stacked ridges with an overall linear- to- crenulate 
morphology are very locally present in Ridge 2 (Figure 7f). 
Those smaller ridges are locally discontinuous (Figure 7g). 
The total extent of Ridge 2 is unknown, and as for Ridge 1, it 
extends outside the area investigated. Ridge 2 is well imaged 
around Ramillies- 1, which intersects it (Figure 7).

F I G U R E  4  Un- interpreted and interpreted seismic lines displaying the seismic expression of the two ridges and time- equivalent strata. 
(a,b) Crossline extracted from the 3D seismic data. Data courtesy of PGS. (c,d) Regional 2D line 136- 05. Location of the seismic lines are 
displayed on Figures 5b (Ridge 1) and 7D (Ridge 2). Note the presence of velocity anomaly zones below the two ridges.
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Analysis of the SWC collected at 580 and 650 mKB 
(Figures 4b and 6d– f), indicates that Ridge 2 is composed 
of quartz grains in a dark matrix, which appears locally 
dolomitized. Quartz grains are very fine to coarse and are 
very poorly to well sorted with sphericity ranging from 
sub- angular to well- rounded. Scarce carbonate bioclasts 
represented by debris of articulated coralline algae and 
echinoids were also identified in the interval. No coral, 
coralgal or otherwise bioconstructed crust were observed 
from well cuttings.

5  |  DISCUSSION

This study has revealed the geomorphology of the two 
Miocene ridges, hence allowing their comparison with 

analogues present along modern continental shelves. It 
is here investigated whether the geomorphology of the 
ridges indicates a reefal origin or not. Results are then 
utilised to discuss more largely the morphological differ-
ences between reefal ridges and coastal ridges. Lastly, we 
conclude with a note on the ambiguity that sometimes ac-
companies the uses of the term reef.

5.1 | Nature of Ridge 1

The main seismic elements characterising Ridge 1 along 
seismic profiles are its high- amplitude and the veloc-
ity anomalies underlying it (Figure  4), which can be 
observed in reefal carbonate buildups (including seis-
mic reefs, sensu Schlager,  2005) but also non- reefal 

F I G U R E  5  Seismic geomorphology of the Miocene Ridge 1. (a,b) Un- interpreted and interpreted amplitude maps extracted from the 
3D seismic horizon cross- cutting Ridge 1. (c) Close- up view of Ridge 1 and time- equivalent lagoon with pinnacle morphologies. (d) Seismic 
cross- sections illustrating the relationship between Ridge 1 and the pinnacles present landward of the ridge. (e) Seismic cross- section 
illustrating the relationship between Ridge 1 and Ridge 2, note that Ridge 2 is masking the most landward portion of the lagoon time- 
equivalent to Ridge 1. Data courtesy of PGS.
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carbonate accumulations (Bubb & Hatlelid, 1977; Marfurt 
& Alves,  2015). However, the limited height of the 
ridge— it is only identified from one reflector— and the 
absence of clear stacking pattern prevents any conclusion 
on its nature based on seismic profile observation alone. 
The comparison of spatial morphologies with modern 
analogues, however, provides material to assess whether 
Ridge 1 was bioconstructed or not.

Morphological comparison between Ridge 1 and the 
individual coral reefs of the Great Barrier Reef (GBR), 
which is the only modern reef province similar in size 
to the Miocene seismic reef track buried along the NWS, 
highlights several elements that contradict a purely 
reefal origin of Ridge 1. First, the GBR is not formed by 
ridges, but by ca. 2900 individual reefs (Bridge et al., 2012; 
Figure 8). Additionally, Ridge 1, like the other ridges of the 
Miocene reef track (Anell & Wallace, 2020), is located in 
a mid- platform setting. This is another dissimilarity with 
the GBR, because there the more linear reefs are located 
at the shelf edge, whereas only smaller linear and circular 
reefs are present in a mid- platform setting (Figure  8d,e; 
Maxwell, 1968). Moreover, even in areas where the reefs 
of the GBR have a relatively linear morphology and 
form barrier reefs (e.g. Ribbon Reefs area; Figure  8e), 
barrier reefs are continuous over only a few kilome-
tres, separated by passes hundreds of metres to several 

kilometres wide, often >40 m deep, and with curved mar-
gins (Beaman, 2017; Hopley, 2006). The longest linear in-
dividual reef of the GBR, Ribbon Reef #10, is 28 km long 
and surrounded by smaller reefs (Figure  8e; Whiteway 
et al., 2014). This length is much smaller than the length 
of Ridge 1, that has a length of at least 60 km (Figure 8a). 
The geomorphological elements from the Miocene reef 
track that have the more similarities with the GBR are 
the ovoid buildups. Those are interpreted as atolls and 
are sometimes associated with the Miocene ridges in the 
northern part of the NWS (Rosleff- Soerensen et al., 2012, 
2016). However, ovoid buildups are absent from the area 
investigated here, hence indicating that the reefs of the 
GBR are not a possible analogue for Ridge 1.

The linearity of Ridge 1 and its geomorphological sim-
ilarity to the modern NWS coastline (Figure 8b,c) might 
illustrate an influence of coastal features on its formation. 
Given that Ridge 1 is ca. 30 m thick, a thickness docu-
mented for both coral reefs and lithified shoreline ridges 
(Salzmann et al., 2013), Ridge 1 could therefore either be: 
(1) a bioconstructed reef developed on drowned coastal 
features; or (2) a lithified coastal ridge. Some elements are 
in favour of a reefal origin, such as the presence of pin-
nacles, which can be interpreted as small patch reefs or 
reef knolls within a lagoon (Figure 8a). In addition, Ridge 
1 is time equivalence to the coral- rich tropical lagoonal 

F I G U R E  6  Photomicrographs in plane- polarised light presenting the facies observed in side- wall cores (SWC) from Ramillies- 1. (a– c) 
Foraminiferal packstone to grainstone from Ridge 1 (SWC at 810 m), (d– f) Mix of matrix and quartz sand from Ridge 2 (d is from SWC at 
650 m and e,f are from SWC at 580 m). Am, Amphistegina sp.; Bi, bivalve debris; Mi, miliolid; Qtz, quartz grain. See Figure 4b for location of 
SWC.
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limestones outcropping in Cape Range anticline (Riera 
et al., 2021). The ridge also has geomorphologic similar-
ities to the central part of the Belize Barrier Reef (BBR; 
Figure 8f), which is composed of a bioconstructed reefal 
system developed on beach ridges (Droxler & Jorry, 2013). 
As such, corals, or other reef- building organisms, may 

have colonised pre- existing seafloor ridges formed 
through coastal processes to build=-  Ridge 1 (as described 
in Droxler & Jorry, 2013; Jarrett et al., 2005; Mohana Rao 
et al., 2001; Ramsay, 1994; Figure 9).

Several elements are nevertheless in disfavour of a 
reefal origin. Those elements include the absence of 

F I G U R E  7  Seismic geomorphology of Ridge 2. (a– c) Un- interpreted amplitude maps derived from three 3D seismic horizons 
respectively crossing the base, middle and upper parts of Ridge 2. (d) Interpreted amplitude map derived from the horizon crossing Ridge 2 
at its base superimposed with the location of the front of Ridge 2 through time. (e) Seismic cross- sections highlighting reflector terminations 
around Ridge 2, note the mounded morphology of the ridge with bi- directional downlaps. (f) Seismic cross- section illustrating the complex 
2D morphology of the smaller stacked ridges present in Ridge 2. (g) Close- up view of an un- interpreted amplitudes map derived from a 
seismic horizon crossing Ridge 2 in its central part and illustrating the geomorphology of the smaller ridges. Data courtesy of PGS.
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F I G U R E  8  Comparison between the seismic geomorphology of Ridge 1 (a; Data courtesy of PGS) and modern geomorphologies. (b,c) 
Aerial photographs of the modern coastline of the Australian North West Shelf at the southern extent of Eighty Mile Beach (b) and in the 
vicinity of Lagrange, ca. 40 km south- east of Broome (c), aerial photographs are from EarthExplorer. (d,e) Close- up view of the present- day 
Great Barrier Reef in its central part, where the reefs are in a mid- platform setting (d) and in its northern part, where reefs have a linear 
morphology and are located along the shelf edge (e), note that in both cases the morphology of the individual reefs is clearly discernible; 
bathymetry is from Beaman (2017). (f) Aerial photograph of the central portion of the Belize Barrier Reef, where it forms a detached 
coral barrier reef with a linear morphology, aerial photography is from EarthExplorer (source: Esri, i- cubed, USDA, USGS, AEX, GeoEye, 
Getmapping, Aerogrid, IGN, IGP, UPR- EGP, and the GIS User Community, ESRI).

F I G U R E  9  Conceptual sketches illustrating how both reefs and stacked coastal features can form sedimentary ridges tens of metres 
thick. Those ridges can exhibit buildup morphologies when observed from seismic- reflection profiles. The sketch of the non- bioconstructed 
carbonate ridge builds on the coastal ridges outcropping along the modern NWS (Lebrec et al., 2022a). The stacked shoreline sketch builds 
on the Miocene Bare Formation, a Miocene deltaic deposit locally >500 m thick which accumulated along a carbonate shelf undergoing 
a strong subsidence (Tagliaro et al., 2018) and which is locally associated with dolomite causing high- velocity seismic zones (Wallace 
et al., 2003).
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smaller reef geomorphologies (e.g., back- reef and atolls), 
such as circular buildups. Such geomorphologies are pres-
ent in BBR (Figure 8f; James et al., 1976), which is there-
fore not an exact analogue for Ridge 1. Additionally, Ridge 
1 is continuous and there are no indicators of sediment 
flow, such as inter- platform seaway, reef passes or slope 
debris, in contrast to other reefs described from seismic 
data (e.g., Courgeon et al., 2016; Posamentier et al., 2010, 
2022; Schlager, 2005). Drowned reefal ridges described in 
the literature tend to be only a few 100's metres or a few ki-
lometres long (e.g., Jorry et al., 2016; Khanna et al., 2017; 
Mallarino et al., 2021; Rovere et al., 2018) or to be com-
posed of joint and isolated pinnacles (Abbey et al., 2011), 
and as such are dissimilar to Ridge 1. Finally, litholog-
ical data do not fully support a reefal origin, as no bio-
constructed crust, lithified coral conglomerate or other 
indicators of reefal bioconstruction were observed along 
the time- equivalent outcrops (Riera et al., 2021) or from 
well data. Those elements are known not only from mod-
ern reefs (Braga et al.,  2019; James et al.,  1976; Webster 
et al., 2018) but also from fossil ones (James & Jones, 2015).

It is hence conceivable that Ridge 1 is composed ex-
clusively of coastal features, similarly to the submerged 
sedimentary ridges present along the modern sea-
floor of Western Australia (Brooke et al.,  2014; Lebrec 
et al., 2022a). Indeed, drowned and cemented wave-  and 
wind- built beach ridges can form linear ridges composed 
of beachrocks and aeolianites reaching heights >30 m 
(Salzmann et al.,  2013) and lengths >1000 km (Lebrec 
et al., 2021,  2022a). Those non- bioconstructed ridges 
can form barriers several 100's km long (Dillenburg 
et al., 2020), and protect lagoons, hence exhibiting mor-
phologies similar to drowned barrier reefs (Salzmann 
et al., 2013; Figure 9). In addition, it is well documented 
from outcrop studies that coastal deposits, and in par-
ticular aeolianites, can be stacked on top of each other 
and reach significant thicknesses (Figure  9; Carew & 
Mylroie,  2001). For example, shore- parallel barriers 
composed of Quaternary stacked dunes reaching thick-
nesses of 200 m above sea level are documented in South 
Africa (Bateman et al.,  2011). Most of the Bahamian 
Islands are built by aeolianites, that can form ridges 
up to 63 m high (Carew & Mylroie,  2001). Similarly, 
Pleistocene carbonate aeolianites, composed of palaeo-
dunes interbedded with calcretes and palaeosols, form 
cliffs up to ca. 80 m high in South Australia (James & 
Bone, 2015). Quaternary carbonate aeolianites are wide-
spread along the present- day Western Australian coast 
(Brooke, 2001), and they can form massive carbon-
ate structures. For example, Shark Bay is protected by 
stacked aeolianite islands up to 150 km long and >250 m 
thick (Frébourg et al., 2008; Le Guern & Davaud, 2005; 
Logan et al., 1970; Vimpere et al., 2022).

The marine nature of the sediment forming Ridge 1 
does not contradict a formation by coastal features, as 
coastal carbonates, including aeolianites and beachrocks, 
have a marine provenance (Abegg et al., 2001). As a result, 
aeolianites and beachrocks can be undistinguishable from 
subtidal carbonate at the thin section scale, due to the 
absence of observable sedimentary structures (Frébourg 
et al.,  2008). As an example, Pleistocene and Holocene 
aeolianites composed of coralline algae, corals, mol-
luscs, echinoderms and foraminifera are documented in 
Hawaii (Blay & Longman, 2001). The present- day Western 
Australian coastline is a ‘hot spot’ of beachrock occurrence 
(Vousdoukas et al.,  2007), and the observation of grains 
>4 mm in SWC from Ridge 1 could indicate a formation 
by stacked beachrocks. Nevertheless, a coarse grain size 
does not necessarily contradict an aeolianite origin, as 
carbonate aeolianites are often composed of heterogenous 
and coarse- grained material (Frébourg et al.,  2008). The 
absence of documentation of middle Miocene outcrops of 
aeolianites and carbonate beachrocks in Western Australia 
is not a proof of their absence, as Miocene outcrops are 
largely understudied, and because carbonate coastal fea-
tures are often misinterpreted as shallow- water deposits 
(Abegg et al.,  2001; Frébourg et al.,  2008). In addition, 
the absence of observation of shoal morphologies from 
3D seismic data raises the question of whether middle 
Miocene outcrops interpreted as shoals in Cape Range an-
ticline and Barrow Island (McNamara & Kendrick, 1994; 
Riera et al., 2021; Figure 1) could be formed by beachrocks 
and/or coastal aeolianites. As such, Ridge 1 could well be 
composed of coastal ridges, which acted as a barrier and 
protected a lagoon. In this case, corals might have been 
present on the ridge as a veneer, and within the lagoon as 
small patch reefs and knolls, but the core of Ridge 1 would 
be composed of carbonate coastal features. Aeolianites 
colonised by a thin coral veneer (not forming reef) are 
for example documented in the Bahamas (Carew & 
Mylroie, 2001) and in Western Australia (Playford, 2004).

5.2 | Nature of Ridge 2

Ridge 2 exhibits several seismic characteristics known from 
both carbonate bioconstructed and non- bioconstructed 
buildups along seismic profile, such as high seismic ampli-
tudes, velocity anomalies underlying it and a mound- like 
morphology (Bubb & Hatlelid, 1977; Burgess et al., 2013; 
Esker et al., 1998; Paumard et al., 2017). However, those 
seismic characteristics are not exclusive to carbonate 
buildups and can be created by buried coastal sands. 
Mound- like morphologies have for example been ob-
served in coastal barriers (Passos et al., 2019). In addition, 
the siliciclastic sands of the Miocene Bare Formation, 
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which are time equivalents to Ridge 2, are also known to 
exhibit a mounded geometry along seismic profiles, and 
to locally reach thickness >500 m (Tagliaro et al.,  2018). 
It is furthermore documented that sandstone bodies 
present within finer lithologies can cause pull- up effects 
(Grasseau et al., 2019). Hence, it appears that aggrading 
coastal sands undergoing early cementation and/or early 
burial, can form mounded seismic features with apparent 
steep slope associated with velocity anomalies (Figure 9).

The seismic geomorphology of Ridge 2 clearly differs 
from modern bioconstructed reefs. Indeed, Ridge 2 is char-
acterised by the presence of convex- outward features simi-
lar to the deltaic lobes of the present- day Ashburton River 
delta coastline, which is composed of active and aban-
doned deltas with well- defined lobes, as well as asymmet-
rical cuspate forelands (Figure 10). The location of Ridge 2 
in front of the present- day Ashburton River delta complex 
further supports a connection between the formation of 
the ridge and the palaeo- activity of the Ashburton River 
during the Miocene (Figure 1). The Miocene asymmetri-
cal cuspate morphologies may indicate the presence of a 
palaeo- longshore drift that shaped the front of Ridge 2. A 
tidal influence on the formation of Ridge 2 may also be 
indicated by the presence of the smaller ridges observed 
within Ridge 2 (Figure 7f,g). They could represent stacked 
linear beach ridges locally developing wave- dominated 
barrier complexes incised by tidal channels (i.e., inlet, 
Figure  10d; also see comparison with Figure  2i from 
Nyberg & Howell, 2016). Those observations indicate that 
Ridge 2 contains geomorphologic elements characteristic 
of wave processes with a local river input and affected 
by tidal processes, leading to the development of wave- 
dominated, fluvial- influenced and tide- affected shorelines 
(sensu Ainsworth et al., 2011).

The formation of Ridge 2 by mechanical processes, and 
not by bioconstruction, is further supported by the mobil-
ity of the lobe and cuspate morphologies through time and 

space. Indeed, the front of Ridge 2 is overall transgressive, 
while it can be locally regressive (Figure 7a– d). The ridge 
also appears to be continuous over at least 80 km, except 
along the smaller stacked ridges (Figure 7g), which is typ-
ical of transgressive non- reefal barrier complexes protect-
ing lagoons or tidal flats (Green et al., 2013; Otvos, 2012; 
Storms et al., 2008; Wenau et al., 2020). No platform reef 
morphologies or deep passes are observed along Ridge 2.

SWC and well cutting analysis further supports the 
formation of Ridge 2 by mechanical processes along a pa-
laeoshorelines, as the ridge is dominantly composed of 
quartz grains. The siliciclastic nature of Ridge 2 implies a 
formation by sediments supplied from rivers, marine cur-
rents and/or wind. The most common bioclasts are debris 
of articulated coralline algae, occurring in most marine 
environments receiving light (i.e., photic zone, ca. 0– 80 m; 
James & Jones, 2015), and echinoid debris indicating car-
bonate production in a normal marine environment (i.e., 
neither brackish nor hypersaline; Heckel,  1972). Hence, 
despite a buildup- like morphology along 2D seismic pro-
files, both the geomorphology and lithology of Ridge 2 
point towards a formation driven by the mechanical ac-
cumulation of siliciclastic sediments along an overall 
carbonate coast. Modern examples of siliciclastic delta 
developed in carbonate environments, that can be used 
as analogues, are documented along the NWS (Lebrec 
et al., 2023; Semeniuk, 1993). Therefore, it is proposed that 
Ridge 2 is an accumulation of stacked coastal siliciclastic 
sands, possibly related to the palaeo- Ashburton delta.

5.3 | Differentiating reefal ridges from 
coastal ridges

Reefal ridges can, in some instances, be difficult to 
 differentiate from drowned and/or buried coastal  
ridges, as both can form barriers that protect lagoons 

F I G U R E  1 0  Aerial photography of the Ashburton River delta and surrounding shoreline (colour image) compared with selected 
close- ups from the Miocene Ridge 2 displayed along envelope attribute maps (grey images), extracted from the 3D seismic volume (Data 
courtesy of PGS). Close- ups of the Miocene Ridge 2 are displayed at the same scale than the aerial photograph. Aerial photograph is 
from EarthExplorer (source: Esri, i- cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR- EGP, and the GIS User 
Community, ESRI).
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(Gardner et al.,  2005; Figure  9). Examples of drowned 
non- reefal ridges that form such structures on the 
present- day seafloor are numerous (e.g., Alcántara- Carrió 
et al.,  2013; Brooke et al.,  2010; De Falco et al.,  2015; 
Lebrec et al.,  2022a, 2022b; Mellett et al.,  2012; Wenau 
et al.,  2020), and they should be considered as possible 
analogues for seafloor ridges observed along continental 
shelves. Additionally, identification of corals or other reef- 
building organism on the inside part of a ridge is not infal-
lible evidence of a reefal origin, as loose corals or other 
sessile organisms can also be reworked to form ridges 
(e.g., Spiske, 2016), which may lead to their misinterpre-
tation as a bioconstructed ridge.

It is possible to interpret the origin of a seafloor ridge 
when geomorphologic elements characteristic of coastal 
or reefal environments are present. Elements character-
istic of reefal development include atoll morphologies 
(Khanna et al., 2017), spurs and grooves (Duce et al., 2016; 
Gischler, 2010; Stoddart, 1969) that can be detected from 
high- resolution bathymetry (Khanna et al.,  2017), but 
also knoll morphologies within the lagoon, which can 
be formed by pinnacle reefs or coral heads (Kennedy 
et al.,  2021). Elements characteristic of coastal environ-
ments include prograding beach ridges, tidal or fluvial 
channels, recurved spits, blow- outs and washover depos-
its (e.g., Brooke et al.,  2017; Lebrec et al.,  2022a; Passos 
et al.,  2019). However, those elements might be visible 
only where data resolution is good, and not often observ-
able from seismic- reflection data.

When performing seismic interpretation or work-
ing on low- resolution bathymetry data, larger elements 
might help to discriminate between coastal ridges and 
reefal ridges. Indeed, coastal ridges are accumulated 
along palaeoshorelines, and as such they tend to exhibit 
linear morphologies continuous over extensive lengths, 
potentially reaching hundreds of kilometres, that re-
produce the shoreline along which they were accumu-
lated (e.g., Brooke et al.,  2014; Lebrec et al.,  2022a). 
Conversely, reefs are organic features that can develop 
on any topographic high, and as such, reefal develop-
ment is often not limited to the barrier along modern 
continental shelves, and smaller platform reefs with 
circular morphologies often develop simultaneously 
to the barrier reef (James et al., 1976; Maxwell, 1968). 
Finally, as coastal features are dynamic objects, the po-
sition of tidal passes is not stable through time, while 
the location of reefal passes is relatively stable. It is 
hence proposed here that the main elements to differ-
entiate between coastal and reefal ridges using seismic- 
reflection data is not the thickness of the ridge in itself, 
as both coastal ridges and reefal ridges can reach sig-
nificant thicknesses (Figure 9), but: (1) the continuity 
of the ridge; (2) the presence or absence of circular 

buildups (atolls) associated with the ridge; and (3) the 
dimensions of the passes, as the observation of deep 
passes along a barrier can be a sign of a stable, biocon-
structed origin.

Reefs that are developed on drowned coastal features 
are hybrid sedimentary objects, that can have geomor-
phologic characteristics of both reefs and coastal features. 
Present- day coral reefs enhancing the deltaic morpholo-
gies underlying them are well documented, with exam-
ples from the Great Barrier Reef, Belize Barrier Reef and 
New Caledonia shelf (Choi & Ginsburg,  1982; Droxler 
& Jorry,  2013; Ferro et al.,  1999; Le Roy et al.,  2019; 
Maxwell,  1970). Those hybrid features can be identified 
using 3D seismic data by the observations of coastal geo-
morphologies whose thickness has been enhanced by 
reefal development (e.g., Mathew et al., 2020). In this case, 
the location of coastal features, such as channel levees, 
bars and deltaic lobes is stable upward, hence indicat-
ing that those coastal features are colonised by aggrading 
reefs.

5.4 | Note regarding the use of the 
term reef

While geologists and most researchers working on mod-
ern coral reefs restrict the use of the term reef to rigid 
and wave- resistant structures that are bioconstructed by 
frame building, sediment retention and binding, follow-
ing the definition from Lowenstam (1950), this is not the 
case of the entire scientific community. Indeed, at least 
two other definitions of the term reef exist, which can 
sometimes cause confusion. Reef was originally a nauti-
cal term designating a topographic high on the seafloor, 
independently of its nature (Cumings, 1932). This defini-
tion is still used today by government agencies and re-
searchers working on marine habitat mapping, marine 
policies and fishery. The term reef is, for example, de-
fined by the European Commission as a hard substrate of 
either bioconstructed or geogenic origin arising from the 
seafloor (European Commission, 2013, p. 13). As a con-
sequence, the term reef is sometimes used to designate 
non- bioconstructed bathymetric highs, such as igneous 
rock outcrops (e.g., granite reef; Campbell et al., 2014), 
drowned aeolian dunes (e.g., Broken Reef; Beaman 
et al., 2005) or undifferentiated bedrock outcrops (e.g., 
rocky and geogenic reefs; Brooke et al.,  2014; Diesing 
et al.,  2009; O'Sullivan et al.,  2020). A more restrictive, 
yet widely used definition, limits the use of the term reef 
to any type of rock lying near or at the surface of the 
sea, which can constitute a hazard to surface navigation 
(e.g., Harris & Baker, 2020). Those two definitions do not 
have biological implications, and they contrast with the 

 13652117, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bre.12774 by A

nne G
unn L

yen G
reen - D

okum
entsenteret N

orges G
eotekniske Institutt , W

iley O
nline L

ibrary on [30/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 15
EAGE

RIERA et al.

definition from Lowenstam (1950), which explicitly ex-
cludes features not bioconstructed.

Even among geologists, there is a degree of uncer-
tainty on the exact definition of reef. As an example, 
Schlager  (2005) stats that ‘the question of what is a 
reef continues to fuel heated discussions among ge-
ologists’ (Schlager,  2005, p. 115). Indeed, according to 
Schlager  (2005), seismic features having morphologies 
similar to modern coral reefs should be designated as seis-
mic reefs, as those seismic features may contain a significant 
portion of non- bioconstructed material. It can indeed be 
difficult to prove that a seismic structure is bioconstructed, 
even when sedimentary cores are available (Burgess 
et al., 2013; Montaggioni & Braithwaite, 2009). Debates on 
what is a reef are not restricted to seismic reefs, and over 
the last century, ambiguity surrounding the term reef in 
geological studies has been consistently pointed out, and 
repeated attempts were made to homogenise its use (e.g., 
Cumings, 1932; Cumings & Shrock, 1928; Dunham, 1970; 
Nelson et al., 1962; Riding, 2002; Wilson, 1975). For exam-
ple, a debate occurred during the 60's and 70's on whether 
the Capitan reef was a reef, even though its structure is 
extensively outcropping and has been considerably stud-
ied, making it one of the most famous ancient reefs in the 
world (Saller et al., 1999). Identifying a fossil reef based 
on the definition of Lowenstam (1950) can be subjective, 
and Dunham (1970) advises to differentiate between the 
observational term stratigraphic reef, which designates 
masses of carbonate sediments either organically or inor-
ganically bound, and the interpretative term ecologic reef, 
which designates purely bioconstructed structures (i.e., 
organically bound).

Debates on the definition of reef also concern present- 
day reefs, with for example discussion on the minimum 
size a structure must have to be designated as a reef 
(Montaggioni & Braithwaite, 2009), or on the amount of 
bioconstruction in modern reefs (Montaggioni,  2001). 
Furthermore, when corals and other sessile organisms 
colonise topographic highs, they sometimes only form a 
veneer of bioconstructed material at their surfaces. This 
gives those features the appearance of bioconstructed 
reefs from shallow observations (e.g., visual description 
based on photographs, surficial sampling), while their 
internal structure is non- reefal (e.g., Jarrett et al.,  2005; 
Mohana Rao et al.,  2001; Ramsay,  1994), hence raising 
the question of whether or not such features should be re-
garded as reefs. Discoveries of deep water bioconstructed 
structures also question whether the term reef should 
be restricted to wave- resistant structures (Heckel,  1974; 
Schlager, 2005), or if it can be used to designate deep water 
azooxanthellate coral bioherms (e.g., Roberts et al., 2006) 
and coral bioherms living in mesophotic environments 
(e.g., Bridge et al., 2012). Hence, it is here recommended 

to specify which definition of reef is followed when work-
ing on reefal structures.

6  |  CONCLUSION

Despite the well- known ability of relict coastal features 
to build massive structures along present- day carbonate 
coasts, those features formed by winds, waves, tides and 
currents are not often described in pre- Quaternary strata. 
This study investigates the nature of two Miocene ridges 
formed along a carbonate shelf that were previously in-
terpreted as reefal ridges based on 2D seismic profiles. 
Here, new information derived from 3D seismic volume 
and well data highlight the role of coastal processes in the 
formation of those ridges.

The older ridge, namely Ridge 1, is a curvilinear car-
bonate feature protecting a lagoon with pinnacles, which 
exhibits a geomorphology reminiscent of the modern 
Australian coastline. The ridge is time equivalent to the 
nearby outcrops of a coral- rich tropical lagoon; however, 
no indicators of bioconstruction by coral, algae or mi-
crobial mats were identified from field or well data. The 
ridge is not associated with ovoid buildup morphologies 
(atolls), and no discontinuities (passes) were observed 
along its front. As such, it is proposed that Ridge 1 could 
either be: (1) a bioconstructed reef developed on drowned 
coastal features, similar to the Belize Barrier Reef; or (2) 
stacked aeolianites and/or beachrocks accumulated along 
the Miocene palaeoshoreline, similar to the relict coastal 
ridges present along the modern Western Australian coast.

The younger ridge, namely Ridge 2, is curvilinear and 
contains several lobes and cuspate landforms. Those 
features appear mobile, as their morphology evolves 
throughout the different stratigraphic intervals. Overall, 
Ridge 2 has striking morphological similarities to the 
modern Ashburton River delta complex, hence pointing 
towards a formation by the accumulation of coastal sand. 
This interpretation is further supported by the abundance 
of quartz grains within the ridge. Hence, Ridge 2 is here 
re- interpreted as a drowned siliciclastic coastline devel-
oped in an overall carbonate environment. As such, it is 
proposed that this ridge belongs to the palaeo- Ashburton 
River delta complex.

Those observations illustrate that corals and other 
reef- building organisms are not the only builders of sed-
imentary seafloor ridges in tropical environments, and 
that aeolianites and other coastal features are capable of 
creating massive structures along carbonate coasts. As 
such, their scarcity of documentation in pre- Quaternary 
strata might be a description bias, as ridges formed by 
stacked coastal features can be misinterpreted as biocon-
structed reefs. Indeed, coastal features subject to early 
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cementation and/or rapid burial are capable of creating 
high- velocity seismic ridges 10's of metres thick. It is 
proposed that coastal ridges can be identified from their 
continuous front and from the presence of coastal geo-
morphologies. When several coastal ridges are stacked 
on top of each other, the location of finer- scale geomor-
phologic elements present within the ridges, such as 
lobes or channels, is expected to evolve upward. In con-
trast, it is proposed that reefal ridges are more discontin-
uous, with deeper and more stable passes. Reefal ridges 
developed on drowned coastal features might contain 
geomorphologic elements characteristic of coastal en-
vironments, whose thickness has been enhanced by 
reefal development, and whose location remains stable 
upward.
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