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S U M M A R Y

This report is based on, and is a continuation of the NGI-report 522090-2
"An Approach to the Physics and the Modelling of Submarine Flows lides",
by Norem, Locat and Schieldrop (1989).
Submarine flowslides are assumed to consist of two flow layers, a dense
flow close to the bed and a turbidity current above that. Both reports
concentrate on the dense part which is considered to behave as a granular
material where visco-plastic behaviour is predominant. The present
report establishes the assumptions and equations for the non-steady flow
necessary for physical and numerical modelling of submarine flowslides.
The equations developed are the momentum equation, the continuity
equation with the corresponding boundary condition, as well as assump-
tions for the conditions at the upper and lower boundaries are presented.
The boundary stresses at the upper surface are assumed to be comparable
with the stresses in the turbulent boundary layer along a flat plate.
The shear stresses have their maximum at the front of the slide and are
reduced to an almost constant level towards the rear.
The boundary conditions at the bed are assumed to be dependent on the
roughness and the shear strength of the bed material. A non-slip
velocity is assumed to exist for real slides, but may develop in model
experiments with a smooth bed. On the other hand erosion may be
significant if the bed consists of a soft material having a low shear
strength. Equations to calculate the development of the slip velocity or
the erosion depth are presented.
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1. INTRODUCTION

The aim of this report is to establish assumptions and expressions needed
for physical and numerical modelling of submarine flowslides. The work is
based on, and is a continuation of the NGI-report 522090-2 liAnapproach
to the physics and the modelling of submarine flowslidesIl (Norem et al.,
1989). The NGI-report was based on theories developed for the flow of
granular materials, mainly snow avalanches, and established the main
similarities and differences between snow avalanches and submarine flow-
slides. That report also presented the results originating from the
application of the numerical model, originally developed for snow
avalanches for the analysis of submarine slides.

The main aim of the present paper has been to establish the equations for
non-steady flow, and to present reasonable assumptions for the boundary
conditions of the dense flow. This will make it possible to reprogram the
snow avalanche model to adapt it to submarine flowslides, or to develop a
new numerical model for such slides.

2. A MATERIAL MODEL FOR THE DENSE PART OF SUBMARINE FLOW SLIDES

2.1 The constitutive equations

A general set of constitutive equations to describe the behaviour of
granular flow was presented by Norem, Schieldrop and Irgens (1987, 1989)
and Irgens (1988). This model assumes that granular materials may be
treated as a continuum where visco-plastic behaviour is predominant. The
model was originally made for snow avalanches, but has later also been
adopted to submarine flowslides by Norem, locat and Schieldrop (1989).

The model by Norem et al (1987) represents a modified CEF-fluid.
(Criminale-Ericksen-Filbey, 1958), where the plasticity term is represen-
ted by generally accepted plasticity theory and the CEF-fluid represents
the visco-elastic behaviour.

f:\brukere\mw\522090\rap\hnl

~
NG.



522090-10 4

In a steady, simple shear flow the general constitutive equations in the
model yields for the normal stresses, ax' ay, az and the shear stresses,
'J'xy' 'J'yz' 'J' zx ' ( Fig. 1):

'J' xz = 'Tyz = O

dv ;
'Txy = C + Pe t anqi + mr (-V

dy

where c = cohesion
= friction angle
= effective pressure (all normal compressive stresses

have a positive sign according to soil mechanic
practice)

= pore water pressure
= average density of the flowing material
= shear stress viscosity of the flowing material

Pe

Pu
p-
m
Vi and v2 = normal stress viscosities
r = exponent (assumed equal to 1 for submarine flow-

slides)

2.2 Discussion of the parameters

The yield strength of the material is represented by the expression
c+Petan~. The first term, c, is a pressure-independent parameter, which
is zero for submarine flowslides consisting of sand or silt
particles. The second term is a Coulomb friction dependent on the
friction angle and the effective pressure.

The friction angle is according to Savage and Sayed (1984) and Hungr and
Morgenstern (1984), very close to the internal static friction angle.
f:\brukere\mw\522090\rap\hni
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The effective pressure, Pe' is the pressure transferred through the grain
lattice, and Pe can be found by Eq. 2. The main terms that define the
magnitude of the effective pressure are the overburden, aY' the pore
water pressure, PU' and the dispersive pressure, pv2(dvx/dy)r.

The pore pressure plays a decisive part in the flow of submarine slides.
It is thus a very important parameter to discuss and evaluate. The pore
pressure may be seen as the sum of the following pressures, Fig. 2:

Pu = Pa + Ptg (H - y) cos a + åUPtg (h-y) cosa

where Pa = the atmospheric pressure
åu = the excess pore pressure expressed as the ratio to

the hydrostatic pore pressure within the flowing mass
Pt = density of the interstitial fluid
H = height to the water level
h = height of the flowslide
g = acceleration of gravity
a inclination of the slide path

Measurements of the pore pressure of materials liquiefied by blasting
have shown that the pore pressure may have values 50% above the
hydrostatic pressure (Kummeneje and Eide, 1961). Sassa (1988) made
experiments with saturated sand exposed to a velocity gradient and found
excess pore pressures inside the flowing mass increasing linearly up to
42% of hydrostatic pressure with increasing shear rates, and Hutchinson
and Bhandari (1971) assumed the excess pore pressure to be dissipated
according to the consolidation theory.

Edgers and Karlsrud (1982) investigated several submarine slides and
found the run-out angle, the ratio of the vertical drop to the run-out
distance, to vary within 1:200 and 1:10 (0.3° - 5.7°). This angle also
reflects the maximum apparent friction angle of the sliding material, and
such low values can be obtained only with high excess pore pressures. An
angle of 2.3° (tan~ = 0.04) corresponds to a 90% reduction of the
effective stress compared to the overburden effective stress, which is
comparable to an excess pore pressure of 63%.

It is thus reasonable to assume that the initial excess pore pressure
will be only slightly reduced during the flow, and the value of the
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excess pore pressure will probably depend on both the shear rates (Sassa,
1988) and the particle size or permeability of the flowing material
(Hutchinson, 1986).

The theoretical investigations on the dynamically induced stresses in
flowing granular materials were initiated by Bagnold (1954). Due to
interparticle contacts he found the existence of both a dispersive
pressure in the y-direction pV2(dvx/dy)r and a dynamic shear stress
pm(dvx/dy)r. The exponent, r, is equal to 1 in the macro-viscous regime
and 2 in the inertia regime.

The ratio of the shear stress and the normal stress viscosities, m/v2'
has been studied experimentally by Bagnold (1954) and Savage and Sayed
(1984), and both have found the ratio to be a material constant. Bagnold
(1954) assumed this ratio to be close to 0.75 in the macro-viscous
regime, and Savage (1983) assumed the ratio to be dependent on the
coefficient of restitution, and for sand the ratio lies between probably
0.6 and 0.7.

There are several experiments and theories on estimating the viscosity of
granular materials in an interstitual fluid. Wildemuth and Williams
(1985) found magnitudes of 10-500 times the viscosity of the interstitial
fluid for volumetric densities between 0.45-0.70. These values are some-
what below those proposed by Bagnold (1954). Locat and Demers (1988)
have presented viscometric data for sensitive clays between 0.01-0.20
Nsm-2. These values are 10-200 times the viscosity of water, and thus fit
very well the theories and experiments made by Wildemuth and
Williams (1985).

2.3 Steady flow with constant height

Steady shear flow with constant height h implies in the two-dimensional
case zero acceleration in the direction of flow, the x-direction, as well
as in the y-direction. Thus the forces acting on the flow must be in
equilibrium in both of these directions at any point x down the slope.

f:\brukere\mw\522090\rap\hnl
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With reference to Fig. 2 these equilibrium conditions will be

ay = (p - Pt) g cosa (h - y) + Ptg (H-y)cosa + Pa

~Xy = (p - Pt) g sina (h - y)- ~h

for the y- and the x-direction respectively.

Here ~h = the shear stress acting on the upper boundary (y = h) of the
dense flow. The value of ~h will be discussed later.

The stresses ay and ~xy are on the other hand given by the constitutive
Eqs. (2) and (4). These two equations are coupled through the effective
pressure which thus can be eliminated, giving as a final result the
following expression for the velocity gradient.

(pl gs ina-Pe 'gcosatanq» (h-y) -( ~h+c)

p(m-v2tanq»
(8)

where P I

Pel

= P - Pt
= P - Pt (1 + åu)

This expression is, however, only valid in regions where the shear
stresses acting on the material exceed the shear strength ~p of the
material. This may occur in the lower and upper parts of the flow, within
the bounds O ~ Y ~ hI and h2 ~ Y ~h. With reference to Fig. 3 these
heights hI and h2 are given respectively by

hl ~h+c
= 1- -....,....--------""""

h gh( p'sina-Pe 'cosetano
(9)

~ ~h-C
= 1 - --:----------:-

h gh( p'sina+p' ecosatanq» (10)
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For the three different layers the velocity gradient will then be given
respectively as:

for O s Y s hl
(p' gs ina-p' e' gcosatanq» (h-y) -( T h+C)

p(m-v2tanq»
(n)

(l2)
dy

(p' gs ina+Pe 'gcosatanq» (h-y) -( T h-C)

p(m-v2tanq»
(13)

If the parameters m, v2, p and âu are known functions of y, the Eqs (11)-
(13) can in principle be integrated. In the present case these parameters
are assumed constant, indicating that the flowslide consists of a
homogeneous material, and with the excess pore pressure linearly
increasing from the upper boundary toward the bed.
Based on these assumptions Eqs (11)-(13) give the following expressions
for the flowslide terminal velocity:

for O ~ Y ~ hl

(14)v(y)

for hl s Y s h2
V = v(hl) (15)
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v(y)
g(p'sinO'.+Pe'cosO'.tan<p)(h-h2)2 [ h-y 2]

::: v(h1)-O.5 1-(1--)
p(m-vtan<p) h-h2

(16)

where v(O) = slip velocity at the bed. The Equations (14) and (16)
satisfy the condition that the velocity gradient at the boundaries of the
plug flow are zero. A typical stress diagram and the resulting terminal
velocity profile are shown in Fig. 3.

For practical purposes it has been assumed that the velocity profile can
be represented by a continuous velocity distribution. For this project a
velocity profile consisiting of a sinus-curve and a straight line has
been proposed:

(17)

In Fig.3the profile for the equation

v(y) ::: 2.6v(h)sin(~Y)-1.8v(h) y
2 h h

(18)

is shown. Fig. 3 indicates clearly that the theoretical profile fairly
well can be replaced by the profile, Eq. (17). One has to bear in mind
that the theoretical profile is based on the assumptions that p, m, V,
and Au are assumed constant during the flow. It thus seems reasonable to
substitute the theoretical profile with an approximate profile. The
difference between the two is also of less significance due to the fact
that the profiles will be integrated.

3. NON-STEADY FLOW

3.1 The momentum equation

To analyse the general non-steady problem the momentum integral equation
will be used. As before, the flow is assumed to be two-dimensional, but
now the flow velocity can vary also with x and t, i.e.

(19 )
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and the height h is given as

h ::: h (x, t) (20)

By considering the flow at any instant through the control volume shown
in Fig. 4, the momentum equation for the flow direction takes the form

(21)

The control-volume is fixed in x, but its height h is allowed to vary in
such a way that its upper surface at all times coincide with that of the
dense flow. This is indicated by the fact that the two partial diffe-
rential operators a/at and a/ax both operate on the two integrals as a
whole.

The first of the two integrals on the left hand side represents the rate
of change of momentum of the mass actually within the control volume at
any particular time t while the second considers the net transport per
unit time of momentum out of the control volume at the same instant.

The force Fx on the right hand side of the equation is the component in
the x-direction of the resultant of all the forces acting on the control-
volume. The infinitesimal length dx of the control volume is common to
all the three terms of the equation and is therefore divided out.

For the steady flow with constant height, h, as discussed in Section 2.3,
we have that a/at::: a/ax::: O, making each term on the left hand side of
Eq. (21) identical to zero, i.e.

F ::: Ox
(2la)

In the later discussion of the boundary conditions at the bed, variations
in the height are considered insignificant, and Eq. (21) thus takes the
form

f:\brukere\mw\522090\rap\hnl
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(21b)

3.2 The acting forces
The forces acting on the control volume are indicated on Fig. 4.
x-direction these are in sum:

In the

h

Fx = CP-Pr)gsinœ h - ~ J axdy + PI ah - ('fh + 'fa)
ax o ax

(22)

where the first term is the driving force due to gravity, while the
second, third and fourth terms represent the forces due to the stresses
acting on the vertical, the top and the bottom surfaces of the control-
volume respectively.

For the approximations made in this case, accelerations in the y-
direction can be neglected, and thus the normal stress ay at any level y
is still given by Eq. (6):

ay = (p- Pf)gcosœ (h-y) + Pf g(H-y)cosœ + Pa (6)

The constitutive Equations (1) and (2) will give that

(23)

which together with Eq. (6) finally gives

(24)

The pressure PIon the upper control surface is given by

Pl = Pf gcosœ(H-h) + Pa (25)
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while the shear stress Th on the same surface will be discussed later.

The shear stress To ~ Txy/y~ is also left to a later discussion.

With Eqs (24) and (25) in Eq. (22) the resultant force in the x-direction
will finally be found to be given as:

Here h, Vx and H are all functions of x. With an exact or assumed
distribution of Vx in the y-direction, the integration in the last term
on the right hand side above may be carried out.

The velocity-distribution given by Eq. (17) has earlier been shown to
give a close approximation to the theoretical profile calculated for the
steady flow with constant height h.

Although Eq. (17) may be expected to give a less satisfactory
approximation in the non-steady state case, the integration of the
profile in the different terms of the momentum equation makes
divergencies less significant. The velocity distribution given by Eq.
(17) is thus assumed valid also in the non-stedy case, i.e.

v(y) (17)

The last term in the expression for Fx will then be
h

a J - avx - (2 1) ah- pv¡ -dy = pv¡ -v¡-- v2 -
ax o ay 'IT 2 ax

(27)

The parameters p and v2 are assumed constant.

3.3 The change of momentum terms

The left hand side of the momentum Eq. (21) can now be calculated to be
f:\brukere\mw\522090\rap\hn¡
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(28)

- { a {2h 1 } { a {h 2 8h h 2}}}= P - -vl--v2h + - -VI--vlv2+-v2at '!T 2 ax 2 '!T2 3

The momentum equation for the general problem of non-steady flow with
varying height h and with a velocity-distribution assumed given by Eq.
(17) will thus take the form

- a 2h h - a h 2 8h h 2
p-{- VI-- V2} + p-{- VI-- VI V2+- V2} =a t '!T 2 ax 2 '!T2 3

= CP-Pr) gs inah-( 'f h-vr o) - CP-Pr) çcoseh ah +ax
- 2 1 ah+ pVI {_ VI -_ V2}-

'!T 2 ax

(29)

3.4 Kinematic condition for the upper boundary

For the approximations made not only the acceleration in the y-direction
but also the corresponding velocity in this direction can be neglected.
This means that

V "" Oy
Dh ah ah

+ V-
x ax (30)

Dt at

Thus

(31)

This makes it possible to substitute for ah/at in the momentum equation,
but terms including aVI/at and av2/at will still remain.

3.5 The equation of continuity

In the present case the masses involved are assumed incompressible, and
the mass balance for the flow through the control volume is therefore
secured by the equation of continuity in the following form:

f:\brukere\mw\522090\rap\hnl
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h

a J ahvxdy + - = oax ato

(32)

where ah/at is the velocity in the y-direction of the upper boundary.

Substituting for Vx from Eq. (17) and for ah/at from Eq. (31) continuity
will finally be expressed by

(33)

or, after rearranging
a 2 1-{- vI-- v2}ax 'IT 2 (34)1 ah

h ax 2 1{(I--)vI--V2}
'IT 2

linking h, vI and v2 and their derivatives with respect to x.

3.6 The final system of equations

The mathematical problem in the general case has 3 unknown functions of
the 2 variables, time t and coordinate x,

h (x,t); vI(x,t); v2(x,t)

As the momentum equation, Eq. (29) has been integrated in the y-
direction, this coordinate no longer appears, leaving a one-dimensional
equation in the coordinate x.
After rearranging, Eq. (29) takes the form

-a 2 1 -a 1 28 1 2p-{-hvI--hv2} + p-{-hvi --hvi v2+-hv2} +at 'IT 2 ax 2 'lT2 3

+ {(P-Pr) ghcosœ-pvI (~-~ v2)} ah -
'IT 2 ax

- (P-Pr) gs inxh + (1" h-Pr o) = O

(35)

f:\brukere\mw\522090\rap\hni
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In summary this equation together with the equation of continuity, Eq.
(34), and the kinematic condition at the upper boundary, Eq. (31),
constitute the necessary 3 differential equations for the 3 unknown
functions h, vI and v2•

The shear stresses Th and To will be given by separate equations
discussed and presented in the following sections.

An additional equation has to be introduced if a slip velocity will
develop. This velocity will also be a function of both time and
distance. The existence and the calculation of a slip velocity will be
discussed in Section 5.3.

4. THE BOUNDARY CONDITIONS AT THE UPPER BOUNDARY

Full-scale experiments with snow avalanches have shown that in the steep
part of the avalanche path, the dense flow is a short distance ahead of
the turbidity current. The turbity current is therefore assumed to be
generated by shear stresses at the upper boundary of the dense flow.

Norem et al (1989) proposed to assume these shear stresses to be
comparable with the stresses acting on a solid moving into a more or less
undisturbed fluid. This assumption can be justified when the avalanche
has a small thickness to length ratio and if currents and effects of long
surface waves can be neglected. For such conditions the shear stresses
estimated by boundary layer theory over flat plates were proposed.

For turbulent flow over a flat rough plate the non-dimensional shear
stress at any point x, measured from the leading edge of the plate, along
the plate is defined by the equation proposed by Schlichting (1966).

T/pV2 = _!_[2.87+1.58log(x/k)]-2.5
2

(36)

where p the density of the fluid above the plate flow
the undisturbed fluid velocityv
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k = the roughness of the plate

In the present context it is assumed that the density can be selected as
the density of the mixed fluid above the dense flow. This is probably
higher than the fluid density because of high particle content in the
boundary layer. The flow velocity is the velocity at the upper houndary
at each element.

The roughness length k has yet to be determined. Bagnold (1962)
considered ripples forming on the beds of sand or silt and concluded
that k would be likely to lie somewhere between the ripple length and the
grain size. This has led us to assume that k will be in the range 0.01-
0.1 m.

It is clear from the graph in Fig. 5 that the highest stresses are found
close to the front, where the thickness of the boundary layer is small.
With increasing distance from the front, x/k ~ 6000 or x ~ 300 m, the
shear stresses are reduced to an almost constant level.

The authors have no knowledge of any recordings of these boundary shear
stresses for any kind of avalanches. NGI has, however, experience from
recording impact pressures from snow avalanches. These recordings show
that the highest impacts from the turbidity currents are found close to
the front of the avalanche (Norem et al, 1985-1989). This indicates that
the highest boundary stresses also should be found close to the front of
the slide.

The boundary shear stresses may also be averaged over the slide length L,
and the averaged shear stress, ~', becomes:

~I/pi = 0.5 [1.89 + 1.62 (L/k)1-2.5 (37)

The plots in Fig. 5 show that these stresses fall rapidly off to a more
or less constant value for L/k greater than 4000.

The importance of the shear stress on the upper boundary depends on the
flow height, the length of the slide and the value of the rougness
length, k. Generally, the boundary conditions are more important for
minor slides than for major slides and if k should be significantly above
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0.1 m.

As a rule the turbidity currents generated by submarine slides draw more
attention than the slides themselves. The turbidity currents may show
substantial flow heights and have impressively long run-out distances.
They must be a result of the shear stresses acting on the upper boundary
of the slide as well as the turbulent transport of mass up into the
turbidity current caused by these stresses.

The mechanism by which the turbidity currents are generated seems to have
been given only little attention in the literature. Most known models are
based on assumptions that the entrainment is a function of the distance
from the head of the avalanche.

A more correct physical approach is, probably, to estimate the
entrainment as a function of the shear stresses at the boundary. This
will be in accordance with theories developed for drifting sand in wind,
drifting snow and bed load formulas for sediment transport in rivers.
A method by which the magnitude of the mass flux through the upper
boundary can be estimated, have yet to be established.

The mass flux through the upper boundary is however assumed to have minor
importance for the flow of the dense part, but to have significant
importance for the flow of the turbidity part of submarine slides.

5. BOUNDARY CONDITIONS AT THE BED

5.1 Assumptions made to model the properties at the bed

The boundary conditions at the bed are more complex to represent than the
previously discussed conditions at the upper boundary. While the
condition at the upper face was shown mainly to depend on the velocity
of the upper face of the dense slide, the conditions at the bed will be
strongly dependent on the material properties of the bed as well as of
the dense slide. A good modelling of the conditions at the bed will thus
depend on a good understanding of the physical processes that take place

f:\brukere\mw\522090\rap\hnl
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there. All existing numerical models assume that flowslides are flowing
on fixed beds. Sassa (1988) has however, presented some ideas for the
pore pressures variations within the bed while the flowslides pass over,
thus giving necessary physical assumptions for erosion to take place.

A flowslide is assumed to flow on an inclined slope, Fig. 6. Any change
of the volume of the element is considered to happen at the lower
boundary and the flow height above the boundary is assumed to be
constant.

The conditions at the bed may be divided into two groups according to
whether the dense flow slides over:

1. Non-erosive beds, i.e. beds in which the plasticity shear strength
exceeds the stress demanded by the dynamics of the flowslide, or

2. Erosive beds, i.e. beds with plasticity shear strengths less than
the shear stress demanded by the flow in Group 1. and consequently
apt to erode and entrain masses into the dense slide.

5.2 Non-erosive bed

Nishimura (1990) carried out model experiments with coarse grained snow
particles flowing down an inclined chute. The bed for the experiment
consisted of either polyethylene film, glued snow particles or sandpaper
having the same roughness as the snow particles. Fig. 7 shows the
recorded velocity profiles, indicating that a slip velocity is only
existing when the roughness parameter, represented by the grain diameter,
is less than the grain diameter in the flowing material.

Most submarine slides flow over beds consisting of almost the same type
of material as the material involved in the slide. It is thus reasonable
to assume that no slip will occur in real slides. In model experiments,
however, the roughnes of the boundary may differ considerably from that
of the flowing material, making a slip velocity more likely to occur,
Fig. 7.

For a one-dimensional flow with constant h all derivatives with respect
to x will be zero, and thus eqs (21) and (26) will be reduced to:

f:\brukere\mw\522090\rap\hnl
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-p.!!_ (vh) =p •ghs ino:-( 1"h+1" b)
dt

(38)

where
h

V = Vo + ~ J vxdy = Vo + vh-vo = the average ve loc i ty
h o

(39)

1"b = shear stress at the lower boundary
1"h = shear stress at the upper boundary

The shear stress at the bed, Tb ' can be estimated by either of the
following equations:

1. When a non-slip velocity condition exists the shear stress may be
calculated by the constitutive equations for the flowing material.

2. When a slip velocity develops the shear stress at the bed is only
defined by the shear stresses within the boundary layer. In this
case Norem et al. (1989) assumed the shear stress to be represented
by the expression:

(40)

where
1"i = shear stress at the bed interface
~i Coulomb friction angle at the bed interface
s = a roughness parameter

The acceleration excluding the slip velocity is given by the forces
acting on the control volume, the shear stress at the bed given by the
constitutive equations and the shear stress at the upper boundary.

(41)

If the shear stress at the boundary is less than the shear stress in the
flowing material, a slip velocity will develop and Eqs (38), (39) and
(41) yield the following differential equation for the slip velocity

f:\brukere\mw\522090\rap\hnl
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gradient with time:

(42)

Equation (40) indicates that the slip velocity is dependent on the
difference of the friction parameters, ~ and ~b' the relative importance
of the kinetic parameters m and s. The main contribution comes probably
from the first term on the right hand side, showing that a significant
slip velocity may only develop if the friction coefficient at the bed is
less than the friction coefficient of the granular material.

5.4 Erosive bed

If the bed consists of a soft bed the transferred shear stresses may
exceed the shear strength of the bed material. In this case erosion of
the bed may occur. The granular material of the bed may be assumed to
show a visco-plastic behaviour represented by the equation:

~b (p - Pf (1 + AUb )) gh cosa tan~b (43)

= the shear strength of the bed material
= Coulomb friction angle of the bed material
= excess pore pressure in the bed material

When erosion takes part there is not assumed to be any slip velocity. It
is also assumed that the eroded particles adjust themselves to the
original velocity profile. The eroded particles will thus serve to
increase the flow height gradually and be accellerated to a velocity
defined by the velocity profile (Eq. 17), Fig. 6.

The equation of momentum based on these assumptions will be:

- d (-) v -( aVh ah) (avh) , . ( )p- vh = -p h-+vh- +Ü - =pghslna- 'To-..Jj"p
dt vh at at ax

(44)

All gradients in the x-direction are considered to be insignificant
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compared to the other terms, and the expression (ùvh/ùx) z o.

Equations (40) and (41) make it possible to develop a differential
equation for the increase of flow height with time, i.e. the rate of
erosion.

The paranthesis of the right hand side of eq. 45 consists of three terms,
each of them dependent on:

(1) the differende of the apparanet Coulumb friction for
respectively the flowing material and the bed material

(2) the viscous shear stress at the bed
(3) the shear stress at the upper boundary

A typical submarine flowslide is assumed to have the following parameter
values.

Flow height:
Flow length:
Veolicity:

2 m
400 m
15 mis

Friction angle, tan ~ : 27°
Shear and normal viscosity: 0.1 and 0.17 Pas.
Shear stress at upper boundary: 2 • 10-3 pv2

The calculated values for the three terms and the resulting erosion are
shown in fig. 8. The two axes are the ratio of the apparanet Coulomb
friction for the bed and the flowing material respectively, and the ratio
erosional depth to the flowing height.

The most dominant terms of eq 45 are the first and the last terms, which
have opposite signs. Fig. 8 indicates that no erosion will occur unless
there is a significant difference in the apparant Coulomb frictions. For
ratios below 0.75 - 0.85 erosion caused by the flowslides may become an
substantial part of the mass involved in the slide. Such a difference in
the apparent Coulomb frictions may be explained as follows:
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1. The properties of the bed material along the path is different of
that material involved in the flowslide.

2. When passing over the bed, the flowslide will cause a sudden
increase in the normal and shear stresses at the bed. This increase
may generate high excess pore pressures and thus reduce the shear
strength of the bed material. This effect has been discussed by
Sassa (1988).

6. CONCLUSIONS

The report presents ideas and expressions in an attempt to describe
physically and mathematically the flow of the dense part of submarine
flowslides. It is the hope of the authors that the physics of the flow
is fairly well described, but it is still necessary to do a parametric
study, and to do model and full-scale experiments to predict the flow of
such slides more accurately.

The material of the dense part of submarine flowslides are assumed to
behave as a homogeneous, visco-plastic material. The presented
constitutive equations fit well into laboratory experiments of granular
materials, and probably also represent fairly well the dynamic behaviour
of silt particles having water as the interstitial fluid, and to under-
stand the long run-out distance submarine slides are the excess pore
pressure, which can obtain substantial values due to the process of
liquefaction and to velocity gradients in the flowing material.

Model experiments on granular flow indicate that there exist velocity
gradients in the flow, and that will probably also be the case in real
avalanches. The calculations are based on assumptions that the velocity
profile can be approximated with a combination of a sinus and a linear
profile. The approximate profile is very close to the estimated
theoretical profile.

The velocity profile is depth-averaged and the equations for non-steady
flow are then developed based on classical hydro dynamical theories. The
presented equations seem to describe the two-dimensional flow fairly
correct, if the basic assumptions, that the flowing material is
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homogeneous and have a visco-plastic behaviour, is true. This has still
to be proven.

The study shows that the physical processes at the boundaries are very
important for calculating the flow of the slides. The shear stresses at
the upper boundary are assumed to be comparable with the shear stresses
in the turbulent boundary layer along a flat plate. Previously rough
estimates indicate that these stresses may be as high as one third of
those at the bed. Obviously, there is also mass transport from the dense
flow to the turbidity current above. This mass flux have probably only
minor significance for the flow of the dense part of the slide.

The boundary conditions at the bed are more complex to represent than the
conditions at the upper surface. The main factors to take into account
are the material properties of the bed as well as those of the dense
slide.

There will be no erosion if the shear strength of the bed material
exceeds the stress required by the dynamics of the flowslide. In this
case there will be no slip velocity if the friction of the bed is equal
or higher than the internal friction of the flowing materia l. In the
other case a slip velocity is likely to occur.

Erosion may take place if the tranferred shear stresses exceed the shear
strength of the bed material. This may be the case if the slide flows
over very soft sediments or high excess pore pressures are generated
inside the bed by the sudden increase of normal and shear stresses. It
is assumed that eroded particles will serve to increase the flow height
and be accelerated to a velocity defined by the velocity profile.

The presented equations for the development of a slip velocity and the
erosion depth is a first attempt to describe these processes
mathematically. The authors are well aware that more theoretical and
experimental research has to be carried out. It is, however, the hope of
the authors that these equations represent a step forward to a better
understanding of erosion caused by slides. This aspect is very important
when evaluating the safety of f.i. oil pipelines, electrical cables and
other seabed installations. The entrainment of mass caused by erosion is
also found to have a significant importance on the velocity and run-out
distance af submarine flowslides.
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The presented ideas make it possible to reprogramme the NGI numerical
avalanche model based on a fixed bed with no slip velocity. NGI will look
for the possibilities to do this reprogramming in order to develop a
model which covers several types of natural avalanches.
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