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Evaluation structures for machine learning models in geotechnical engineering
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ABSTRACT
There is currently a lot of interest in applying machine learning (ML) techniques to problems in
geotechnical (soil and rock) engineering and adjacent fields such as engineering geology.
Recent literature emphasizes the need to focus beyond methodological challenges, and the
importance of data centricity, transparency, suitability for practice and geotechnical context –
together, the so-called “data-centric geotechnics”. This review paper offers additional
perspective to be contemplated for successful applications of ML in geotechnics: one should
explore and discuss (i) the problem to be solved, (ii) the type, quality and quantity of data, and
(iii) the methodology/algorithm. The paper further discusses that more strict guidelines and
protocols are required for evaluating data and trained ML models if they are to be accepted
and successfully integrated into practice. In the transition to data-centric practices, geotechnical
engineering, a traditionally data-poor field, has much to learn from fields where decision-
making based on data has a long and rich history.
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1. Introduction

There is currently a lot of interest in applying machine
learning (ML) techniques to problems in geotechnical
(soil and rock) engineering and geo-sciences. The
large number of recent publications and the wide
range of applications have resulted in a very active yet
divergent literature, warranting a few review papers.

The review paper by Zhang et al. (2022) provides infor-
mation about ML terminology and basic definitions, as
well as background to key ML algorithms. It also gives
an overview of current applications of ML in the fields
of geotechnical engineering and geo-sciences, based on
which recommendations for future developments are pro-
vided. Phoon et al. (2023) report the outcome of the
ISSMGE TC309/TC304/TC222 Third Machine Learning
in Geotechnics Dialogue (3MLIGD), including discussions
about doubts from the industry about the digital trans-
formation as well as the need for setting up frameworks
and schemes for fostering collaboration and communi-
cation among the researchers and practitioners interested
in applications of ML in geotechnical engineering.

Phoon and Zhang (2023) provide an overview of the
ML algorithms and applications found in a survey of a
few hundred articles compiled by ISSMGE TC304/309
in 2021. Moreover, in a forward-looking discussion,
they envision a “data first practice central” agenda for

the future of ML applications in geotechnical engineer-
ing. In their view, data-centric geotechnics should be
based on three pillars: data-centricity, fit for (and trans-
form) practice, and geotechnical context.

In this paper, we present a critique of the current state
of typical applications of ML in the geotechnical litera-
ture, discussing a triad of problem, data, and algorithm.
The presented material overlaps with the above-men-
tioned review papers in some areas while it provides
additional perspective about the anticipated challenges
and requirements for bringing ML to geotechnical prac-
tice. We recognize that successful integration of ML in
geotechnical engineering practice requires efforts from
both theML research community and the industry. How-
ever, given that geotechnical engineering has traditionally
been conservative, slow to adopt new approaches, and
heavily reliant on past experiences, the current practice
is emphasized more in our discussions.

We aim to provoke discussions about the demands of
a field of study/practice that is attempting to become
more data-centric (at least in some areas) but is not
equipped for doing so due to its data-poor heritage.
We argue that for this transition, much is to be learnt
from fields where decision-making based on data has
a longer and richer history, e.g., pharmaceutical clinical
trials.
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The paper is organized as follows. Section 2 estab-
lishes a hierarchy of essential components of a success-
ful ML research, i.e. formulating the research problem
considering existing knowledge, identifying what data
are required to achieve an acceptable ML solution,
and finally the choice of algorithm. Section 3 then
explores in more detail some of the key obstacles we
foresee for bringing ML research into engineering prac-
tice, and then discusses potential solutions and direc-
tions for future research. It is noted that, given that
this paper presents a critique of the current literature
on ML in geotechnics, we find it non-constructive to
refer to individual works as examples of shortcomings
that we discuss; more general statements are made.

2. What should come first: algorithm, data, or
the problem?

“A field of inquiry, no matter what it is, is established by
some array of questions that we pose, and as any
researcher knows, asking the right questions is often
the hardest part of the task; if you can do it, you may
have won more than half the battle. The right questions
are those that open up a program of inquiry that leads
to insight and to problems that are worth understand-
ing. There is no shortage of wrong questions, in fact
they come in many varieties… finding the right ques-
tions is harder. Often, the right questions are very
simple. They invite us to become surprised about per-
fectly ordinary things – things that we had taken for
granted”. (Noam Chomsky (Chomsky 1992))

Generally, ML solutions rely on large amounts of data to
directly link input data to output data, usually not
including explicit physical or mechanistic understand-
ing. Their primary goal is prediction; these methods
are not designed to provide insight into the inner work-
ings of the system being studied, and in turn, nor do
they typically provide recommendations for future
directions for research, at least not in the sense that
the scientific method does.

Geotechnical engineering, as a branch of applied
science and classical physics, has a model-based tra-
dition. Many geotechnical models are mathematical
representations of idealized mechanical relationships,
and they have been the result of asking interesting ques-
tions about fundamental matters such as geo-material
behavior, the response of structures, or the possibility
of generalizing from micro to macro properties. There
are also many areas of geotechnics where empiricism
has governed for long. For example, some popular
empirical models are employed as proxy measures
(using less precise but cheaper or more accessible data
to predict geo-material properties), e.g., using point
load index tests to predict intact rock strength and

cone penetration test (CPT) data to predict soil strength
and stiffness. Many empirical models are also, to some
degree, physics-informed in the sense that correlations
between their inputs and output do not seem entirely
unreasonable based on some physical understanding.

We believe that distinction should be made between
endeavors that are aimed at providing insight and under-
standing (in research, engineering analysis or design) as
well as guiding future fundamental research on one
hand and developing useful prediction tools on the other.

In areas of geotechnical engineering where knowledge
and understanding have taken the form of strong models,
a trade-offwith pattern-seekingmethods, especially when
considering the limitations of geotechnical data (both
technical and logistical, see Sections 2.2 and 3.1), does
not seem a wise choice. On the other hand, in situations
where the models are weaker and considerably larger
amounts of data are available, it could be promising to
explore the “data-algorithm duo” to build tools that
facilitate repetitive tasks involving little or no critical
thinking, or provide predictions at scales that usually can-
not be modelled (e.g., the potential of landslides in a large
area). In the age of AI hype, it is important not to lose
sight of the context of the developed tools, how they
relate to practice, and what characteristics they should
have in order to be accepted and successfully integrated
into the current practice.

The remainder of this section discusses a problem-
data-algorithm hierarchy that should be paid attention
to when developing AI systems for use in geotechnical
practice and research.

2.1. The problem

For a field like geotechnical engineering which has typi-
cally relied on models (theoretical or empirical), limited
data and subjective expert judgment, the attractiveness
of the recent developments in AI is understandable;
data-related research in geotechnics is now a recognized
and very active research area. However, much of this
research has an unbalanced focus on exploring and mod-
ifying algorithms and applying them to example data sets.
The ML-related geotechnical literature includes many
papers associated with ML algorithms or soft computing
techniques (Zhang et al. 2022). This “algorithm-first” lit-
erature and research culture has also been criticized by
Phoon and Zhang (2023), who discuss that more attention
should be paid to data. Less attention has been paid to how
these new methods should fit into the current model-
based culture of the field. Zhang et al. (2022) raise a similar
point when discussing physical-modeling vs. data-driven
methods and suggest constructing “domain-aware” ML
models as a topic for future research.
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This section offers a more stringent view of the
importance of domain awareness and recommends
that this should be taken more seriously and communi-
cated explicitly from the early stages of developing the
research question/problem. In other words, it should
be argued and justified why a data-driven approach is
appropriate; reasoning should go beyond “some data
are available, and we know a class of algorithms for ana-
lyzing such data” – just because we have data that can be
plotted as x-y data in a scatter plot does not mean we
have to perform linear regression. We find from our
experience in working with experts and experienced
engineers that one of the roots of their reluctance
towards ML and data-driven models is that what they
consider key elements in solving the problem at hand
are absent from many of these models. For instance,
current mechanistic understanding might be that
some quantities (features) are necessary to capture the
physical response of a system (e.g., in-situ stress and
rock mass permeability for modelling water leakage
into a tunnel). However, a ML model might not include
them simply because they are not part of the available
data sets due to the difficulties in measuring these quan-
tities. Another example is including geology and geo-
logical features; it might be challenging to include
subjective and vaguely defined geological conditions in
an ML model. In both examples, the current practice
attempts to consider such information via a combi-
nation of (numerical) modelling, limited data, and
expert judgement.

In our opinion, before thinking about data and algor-
ithms, a geotechnical ML application should explicitly
consider the following points and provide context for
any proposed ML solution if it wants to be successfully
adopted in geotechnical engineering practice.

The problem at hand could have existed before with
traditional none-data-heavy solutions. This means that
established domain-specific knowledge must be con-
sidered. This knowledge could take the form of expert
knowledge, theoretical (mechanistic) or empirical
models calibrated to (potentially limited) data and
with associated bias and uncertainty and recommended
domain of applicability. This knowledge could be used
to, e.g., embed physical constraints in the AI model
architecture (Zhang et al. 2022), which could in turn
result in more reasonable ML models. Unfortunately,
the current geotechnical literature includes many ML
studies that ignore important domain-specific knowl-
edge and understanding, and thus remain at the level
of exercises in training an algorithm with some data.
Early attempts at justifying the ML solution in the
engineering context, considering domain-specific
knowledge and critical comparison with what the

available data could potentially offer, could result in
recognizing the fruitlessness of a data-centric approach
and ML solutions. Finally, including domain-specific
knowledge in ML models does not automatically
imply reasonableness and should be evaluated against
current acceptable practice; the benchmark model
(also see Section 3.2) is not always necessarily another
data-driven model. That is, predictions of an ML
model might need to be compared against a customary
engineering solution which is model-based that uses
limited data and assumptions based on expert
judgement.

Quite differently, the problem at hand might lack a
long history in the field and is being considered more
recently, mainly because new type/quality/quantity of
data have become available that could lend themselves
to ML solutions. Phoon et al. (2023) suggest for ML
research to focus on projects that involve extensive
complex data from multiple sources that cover large
spatial/temporal domains (the so-called ML supremacy
projects). The use of CPT and seismic data in recent
years for site characterization is an example of this,
where the problem is to a large extent data-oriented,
and also the more traditional statistical methods have
not had the opportunity to establish themselves; rather,
they have evolved together with ML solutions. Another
example is large quantities of monitoring data (e.g.,
InSAR and LiDAR). Although domain-specific knowl-
edge might be weaker in such applications and play a
less critical role, it is important to include context-
dependent constraints (e.g., geological conditions) in
any ML model.

It is noted that the above should not be interpreted as
arguments against using ML in geotechnics, but rather
as a caveat about the importance of including domain-
specific knowledge, as early as the time of formulating
the problem to be addressed, regardless of the algorithm
and data analysis approach (e.g., more traditional stat-
istics, ML or Deep Learning) being used.

2.2. The data

“… the most important thing is what data you use, not
what you do with the data.”

The above seemingly radical statement is from a discus-
sion paper about approaches to statistics, ML and DL by
Gelman (2021). It also resonates with many experienced
engineers: much of geotechnical data are typically not of
the highest quality, are limited in quantity, and further-
more exhibit significant site or project dependency.

Ideally, after identifying the research problem/ques-
tion considering domain-specific knowledge, one
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should ask “what type of data, in what quantity and with
what quality” are required to provide answers with
specific characteristics (e.g., precision or domain of
applicability) to the problem at hand. The golden stan-
dard data that address this question are experimental
data – in the statistical sense of design of experiments
(e.g., Casella, Fienberg, and Olkin 2008) – where the
data gathering process is planned considering the con-
ditions being studied and anticipated variations. Exper-
imental data are commonplace in fields such as clinical
trials but are rarely part of geotechnical engineering
research or practice. Observational data, on the other
hand, are more common in the geotechnical domain;
available data are gathered from different sources and
case studies, and compiled into databases deemed suit-
able for a particular application. This is not a limitation
by itself as statistical techniques are available for
handling such data (e.g., Rubin 2007), and most ML
techniques that use large data are also suitable for obser-
vational data.

It is important to understand data types which are
used as input to an algorithm that directly links them
to the output. For example, it is difficult to justify the
use of “subjectively assessed”, at best nominal (as
opposed to continuous or ratio data that are “measure-
ments”) rock mass classification indices (GSI, Q,
and RMR) to predict physical phenomena in rock
masses (e.g., strength and stiffness, ground response,
and water tightness). This is regardless of the amount
of data and complexity of the algorithm used. Another
example from rock engineering is using measurement
while drilling data to predict rock mass properties or
geology in front of a tunnel face. The input data should
include attributes whose correlation with the output
(quantity of interest) can be argued from some basic
understanding of the system and independent of the
proposed data analysis method. This is important for
avoiding spurious correlations.

Data quality is another issue that should be con-
sidered. A few examples of how some of the most
basic geotechnical data are in fact not of high quality
by default are: measurements of in-situ stress in rock
masses using the overcoring method where imprecise
and unchecked assumptions are made about rock
mass stiffness, considerable uncertainty in strength
and stiffness measurements of clays due to sample dis-
turbance and imprecise estimations of in-situ stresses,
and unknown relationships between laboratory
measurements on reconstituted sand specimens and
the in-situ properties. The data analyst usually only
encounters individual numeric values reported for
such parameters in a compiled database, with little or
no information about their background and

uncertainty; the ISSMGE TC304/309 compilation is an
example. Another example from the first author’s
experience is the subjectively assessed quality of axial
capacity data from instrumented piles by a team of
experts (Lehane et al. 2022) where no pile received a
perfect quality score.

Phoon and Zhang (2023) state that in data-centric
geotechnics, data have value if they are not fake or cor-
rupt. We generally agree with this assessment and add a
cautionary comment that data qualities must be con-
sidered in the data analysis, possibly with mechanisms
that allow for data of different quality to enter the ML
training process with different weights, a topic for future
research. A further consideration is establishing the
domain of applicability for an ML model considering
the conditions the data cover (e.g., geological con-
ditions, sites, projects). Another relevant question is
that for what purpose and to what extent data sets
should be used. We discuss this in Section 3.2 in the
context of different “Phases” of evaluating algorithms.

The amount of data required for making an ML
model applicable to problems in a certain domain
should be considered. Example question that can be
asked is: is the sample size large enough? The answer
to data quantity concerns also depends on the appli-
cation in mind. For instance, a site-specific problem
and a wider development which is planned to be
included in a design standard to be used industry-
wide require different data treatment standards. Decid-
ing sample sizes and number of groups also falls under
the domain of experimental design.

2.3. The algorithm

The choice of algorithm(s) should come last after addres-
sing concerns in domain-awareness problem description
and data selection. The recent review papers by Zhang
et al. (2022) and Phoon and Zhang (2023) and the
ISSMGE TC304/309 compilation give an overview of
algorithms and the kind of geotechnical problems they
are applied to. Here, we provide additional comments.

Zhang et al. (2022) discuss the need for establishing
and using benchmark data sets to allow for a common
ground for evaluating the performance of different
algorithms; we agree that this is necessary. In our
opinion, the current literature also suffers from what
we refer to as the “straw-man baseline (or benchmark)
model”. That is, there are many publications in which
the performance of the proposed more advanced ML
algorithm is measured against much simpler models
that are clearly inappropriate for the data at hand, e.g.,
using a linear baseline model for obviously non-linear
data, and in turn making exaggerated claims about the
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superiority of the proposed ML model. The benchmark
model(s) should provide reasonable fits to the data.

3. Integration into practice

The discussion in Section 2.1 regarding understanding
the problem is concerned with a fundamental issue
and should be an integral part of all research, regardless
of potential applications. The matters of data and meth-
odology however exhibit more profound challenges,
particularly regarding integration into practice as dis-
cussed in this section.

3.1. Data

Section 2.2 discussed the more technical aspects related
to data, i.e. type, quality, and quantity. Phoon (2020)
identifies a crucial logistical barrier that most geotechni-
cal databases are essentially not accessible to the wider
community. He further proposes the timely research
question of “data anonymization” in a manner that
the data are useful for training ML algorithms, yet the
data owner’s confidentiality is protected. Moreover,
Zhang et al. (2022) discuss the issue of legislation for
AI-based applications. Here, we add that this has differ-
ent aspects, one of them being concerns specific to data
provenance and quality.

We believe that the data anonymization proposal by
Phoon and Zhang (2023) is a necessary step in the right
direction, but not sufficient. Geotechnical engineering
has traditionally relied on past experience, been conser-
vative in adopting new methodologies, and has attached
significant status to data quality. Therefore, for a trained
ML model to be accepted in practice, stronger require-
ments about the underlying data are necessary, perhaps
similar to the FAIR (findable, accessible, interoperable,
and reusable) data principle (Wilkinson et al. 2016).
Another alternative is the idea of “intelligent transpar-
ency” proposed by O’Neill (2006), who argues that
information should be accessible (interested people
should be able to find it easily), intelligible (they should
be able to understand it), useable (it should address their
concerns), and assessable (if requested, the basis for any
claims should be available). It is noteworthy that follow-
ing the FAIR data principles is currently a requirement
for many projects funded by the European Union.

3.2. Algorithms

Zhang et al. (2022) point out unanswered questions
about responsibility and concerns about the data
used in AI-based systems from a legislative perspective.
We add that the same applies to algorithms. The

requirements by the European Union’s Artificial Intelli-
gence Act (AIA) for certain applications of AI systems
to be sufficiently transparent, explainable, and docu-
mented highlight the importance of this issue. It is
recognised that this may not be an immediate concern
for geotechnical engineering applications. Nevertheless,
we believe that the geotechnical engineering community
should independently explore the challenges and poten-
tial solutions for including ML models in design stan-
dards. This section discusses one possible workflow
inspired by standard practices from the field of clinical
trials. It is noted that more research and community-
wide discussions are required before decisive actions
can be advised.

3.2.1 Algorithms and trust
Spiegelhalter (2020), discusses applications of AI in the
fields of health care and criminal justice systems which
have more direct and immediately visible social conse-
quences. He explores the matter of ethical use of algor-
ithms and exaggerated AI-related claims, and points out
a general lack of “evaluation structures” for algorithms.
Related problems have been brought to the forefront of
the news and public discussions with the release of
ChatGPT and other large language models. Given that
engineering is generally concerned with safe, risk-man-
aged, durable, and economical designs, we believe that
useful parallels could be drawn to Spiegelhalter’s
recommendations.

O’Neill (2013) discusses trust in society and proposes
that one (individuals, officials, or organisations) should
not try to be trusted but rather aim to demonstrate trust-
worthiness. Inspired by this, Spiegelhalter (2020)
suggests that when using the results of any algorithm,
one should consider trustworthiness of (i) claims
about the algorithm, i.e., what the developers say it
can do, and how it has been evaluated, and (ii) claims
by the algorithm, i.e., what it says about a specific case.

3.2.2 Learning from clinical trials
When dealing with the trustworthiness of claims about
the algorithm, in addition to FATML (Fairness,
Accountability and Transparency in Machine Learning;
Oswald et al. 2018) considerations, Spiegelhalter
suggests evaluating benefits (or potentially harms) of
algorithms using a system comparable to the well-estab-
lished procedure used in medical pharmaceuticals
shown in Table 1. Briefly, in a pharmaceutical study of
a new drug, Phase 1 focuses on testing the new drug
on healthy volunteer individuals. Phase 2 entails testing
on people who have the disease and exploring issues like
optimal dosage in a clinical setting. Phase 3 is when the
new drug is tested in practice through randomized
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trials, studying if it has benefits over the existing stan-
dard treatment, and then seeking approvals from regu-
lators when it does. Phase 4 is post-marketing
surveillance, watching for long-term side effects.

Phase 1 (digital testing) in Spiegelhalter’s parallel
aims to quantify the accuracy of the algorithm on test
data sets. Phase 2 (laboratory testing) is still one step
removed from practice and involves comparing the
algorithm’s performance to human experts, perhaps in
the form of Turing tests. Phase 3 attempts to quantify
the (possibly incremental) benefit (or harm) of using
the algorithm over standard practice. It should be
noted that designing Phase 3 for testing algorithms
could become complicated because of “contamination”;
that is, the practitioner (e.g., the physician or engineer)
who is randomly assigned to the group where the algor-
ithm is used could potentially learn from the algorithm,
therefore contaminating the estimated algorithm effect.
There are well-established statistical methods for deal-
ing with this issue, discussion of which is beyond the
focus of this paper. Finally, Phase 4 entails monitoring
for problems when the algorithm is adopted in practice
and regularly used. This four-phased evaluation struc-
ture has the potential to be adapted for geotechnical
engineering applications as discussed below.

Phase 1
It is fairly straightforward to imagine Phases 1 and 2

being implemented as either recommended or compul-
sory steps for evaluating ML algorithms in geotechnical
engineering. Phase 1 could take the form of applying an
algorithm to test datasets, which could be simulated
data and/or existing well-studied, well-behaving site-
specific or generic data sets. This is performed to
some extent in the literature but perhaps could be
further formalized in the context of geotechnical engin-
eering applications of ML. We believe that the idea of
establishing and regularly using benchmarking data
sets discussed earlier fits in this phase.

Phase 2
Phase 2 could include comparisons with engineering

assessments provided by practicing engineers (junior
and senior) and perhaps selected existing practices

and other competing algorithms. The benchmarking
data sets also have the potential to be used in Phase
2. For more ambitious algorithms that aim at automat-
ing more significant portions of the engineering design
process, the concept of “shadow projects” that came out
of the discussion sessions in the ISSMGE TC309/
TC304/TC222 Third Machine Learning in Geotechnics
Dialogue (3MLIGD) (Phoon et al. 2023) could be
adopted. The idea is for the industry (current practice)
and academia (proposed algorithm(s)) to work in paral-
lel on the same real-world problem (see Phoon et al.
(2023) for more details). It remains to be seen if such
collaborations will materialize and what exact form
they will take.

Phase 3
Successful Phases 1 and 2 could be seen as proof-of-

concept, but do not answer the fundamental question of
“what is the on-average effect of using the algorithm
compared to current practice?”; a randomized study in
Phase 3 is supposed to answer this question. Spiegelhal-
ter (2020) points out that Phase 3 studies for algorithms
are rare, even in fields such as healthcare where data-
centricity and randomized studies have a long history
of playing a central role. This could be attributed to
lack of regulations as well as the cost associated with
conducting such studies for algorithms. Randomized
studies have played no part in the landscape of geotech-
nical engineering research or practice, and the authors
do not foresee that they will in the future either. For
example, consider an ML model for soil stratigraphy
interpretation based on CPT data that has passed Phases
1 and 2. A Phase 3 study should ideally include multiple
randomly selected experts and sites with CPT data, ran-
domly assigned to either the algorithm or expert. The
soil layering from the two approaches can be compared,
at least at the location of observed CPTs. A further con-
sideration could be investigating the effect of using the
algorithm on final designs. This might range from rad-
ical changes such as adopting a completely different
design strategy, to incremental changes such as devi-
ations in dimensions from the original design. Planning
such studies seem impossible in geotechnical practice.

Table 1. Phased evaluation structures (modified from Spiegelhalter 2020).
Phase Pharmaceuticals Algorithms (general) Algorithms (geotechnics)

1 Safety: Initial testing on humans Digital testing: Performance on
test cases

Evaluating performance on simulated data, well-known and
benchmarking data sets

2 Proof-of-concept: Estimating efficacy and
optimal use on selected subjects

Laboratory testing: Comparison
with humans, user testing

Comparison with expert engineering assessments, utilising
benchmarking data sets; shadow projects

3 Randomized Controlled Trials: Comparison
against existing treatment in clinical setting

Field testing: Controlled trials of
impact

Matter of future research

4 Post-marketing surveillance: For long-term
side-effects

Routine use: Monitoring for
problems

Monitor performance in routine use to identify general
problems, edge cases, and further developing safe-fail
mechanisms

GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS 57



Regardless, the question about “the on-average effect”
remains. This paper suggests exploring Phase 3 and
possible alternatives that can be adopted in geotechnical
engineering practice as topics for future research, with
the aim of regulating and providing guidelines for
bringing ML into engineering practice.

Phase 4
Unlike the first three phases, geotechnical engineer-

ing has a long history of using continuous monitoring,
e.g., during construction (using the observational
method (Peck 1969; 2001)) and afterwards, using the
data as input to early warning systems or tasks such as
model updating. These practices could be adapted and
modified to monitor new algorithms in practice,
develop guidelines for identifying general problems
and edge cases, and devise fail-safe mechanisms and
human intervention.

It is emphasized that the above points should not be
read as criticisms of current geotechnical engineering
practice where acceptable designs are achieved by a
combination of the probabilistic engineering design
framework, expert judgement, and reliance on past
experiences. Rather, the point is that the current culture
and approaches are not data-centric and not prepared
for dealing with a data-centric world; therefore, there
is a need for developing procedures tailored to data-cen-
tric geotechnics. In doing so, much can be learnt from
fields with longer histories of reliance on data for
decision-making, e.g., clinical trials.

3.2.3 Uncertainty communication
So far, we discussed the issue of evaluating trustworthi-
ness about the algorithm. Geotechnical engineering
research and practice have been better equipped to
deal with claims made by algorithms. For instance, it
is well understood that one should justify if a trained
model (statistical or ML) is applicable in a particular
situation, e.g., the problems of site-challenge discussed
by Phoon (2020) and domain of applicability discussed
by Bozorgzadeh and Bathurst (2022). Spiegelhalter
(2020) also lists the issues of the chain of reasoning
that led to the claim, effect of different inputs (counter-
factuals), existence of a piece of information that “tipped
the balance”, and the uncertainty surrounding the
claim. The latter point is particularly important in
engineering domains, but unfortunately generally
absent from most of the geotechnical ML literature;
point predictions have been the focus (a typical charac-
teristic in, e.g., most of the ISSMGE TC304/309
compilation).

Geotechnical engineering is not unique in this
respect and is part of a broader culture of using data-dri-
ven techniques for point predictions. Such evaluations

and features are also absent from much of the literature
on ML applications in various domains, even from pop-
ular tools such as Google Translate or, more recently,
large language models such as ChatGPT. For instance,
the authors believe that Google Translate does not
translate every sentence with the same quality. More-
over, translations between different languages do not
exhibit the same precision. However, no indication of
confidence is provided alongside the translations pro-
vided by the algorithm to the user. Determining if
uncertainty/confidence-conveying features are impor-
tant for these popular tools and applications is not a
concern of this paper, but it is our explicit recommen-
dation that it is important for geotechnical applications.
Therefore, given that geotechnical engineering predo-
minantly adopts and uses ML algorithms rather than
develop them, it is crucial to pay attention to engineer-
ing-specific requirements, and establish appropriate
guidelines for satisfactory communication of uncer-
tainty in predictions.

As an example, an engineer could reasonably expect
trained ML models for CPT-based soil layering or land-
slide hazard mapping/early warning systems to convey
confidence in their classifications and predictions,
respectively. This could take the numeric form of prob-
ability intervals obtained using Bayesian machine learn-
ing methods (also discussed by Phoon and Zhang
(2023)) or bootstrapping the ML procedure. A further
step for facilitating practical use could, for example,
be communicating these intervals in the form of
“traffic light” assessments with categories of high, med-
ium, and low/no confidence, conveying to the user that
a quick quality control of the results suffices, or a more
thorough one is required, or that the algorithm output
should be disregarded and replaced by evaluations
from the user.

4. Concluding remarks

Machine learning techniques are being widely used in
geotechnical engineering research literature. Recent
review papers give an overview of the status of the cur-
rent literature and discuss potential directions for the
future of ML in geotechnics. They also identify some
of the challenges the geotechnical community faces for
bringing ML into the engineering practice.

This paper provides additional perspective to these
discussions. We first discussed that successful machine
learning research should consciously consider all
forms of information available about the problem at
hand, then consider data quality and quantity required
for answering the proposed research question, and lastly
choose an algorithm.
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We then discussed that current design approaches in
geotechnical engineering are a direct result of the field
having been data-poor historically; geotechnical engin-
eering is not equipped to deal with the challenges of
data-centric research and practice. As a community we
need to develop guidelines and protocols, particularly
for addressing concerns about data and performance of
ML algorithms, not in a research vacuum, but in the con-
text of current practice. In doing so, there is much to be
learnt from fields such as clinical studies that have a long
history of decision-making based on data.
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