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A B S T R A C T

This paper introduces three machine learning (ML) algorithms, the ‘ensemble’ Random Forest (RF), the
‘ensemble’ Gradient Boosted Regression Tree (GBRT) and the MultiLayer Perceptron neural network (MLP) and
applies them to the spatial modelling of shallow landslides near Kvam in Norway. In the development of the ML
models, a total of 11 significant landslide controlling factors were selected. The controlling factors relate to the
geomorphology, geology, geo-environment and anthropogenic effects: slope angle, aspect, plan curvature, profile
curvature, flow accumulation, flow direction, distance to rivers, water content, saturation, rainfall and distance to
roads. It is observed that slope angle was the most significant controlling factor in the ML analyses. The per-
formance of the three ML models was evaluated quantitatively based on the Receiver Operating Characteristic
(ROC) analysis. The results show that the ‘ensemble’ GBRT machine learning model yielded the most promising
results for the spatial prediction of shallow landslides, with a 95% probability of landslide detection and 87%
prediction efficiency.
1. Introduction

Precipitation-induced shallow landslides are common natural hazards
of mountainous regions in Norway. They can cause massive casualties
and significant losses and damage to property. An improved prediction of
precipitation-induced landslides would help mitigate losses, reduce
number of fatalities and significantly improve risk mitigation strategies
for current and future climate scenarios.

Landslide prediction models can be categorized into two groups:
numerical models and data-driven models. In the last years several
physically-based numerical models have been proposed for simulating
landslide initiation (e.g. Montgomery and Dietrich, 1994; Pack et al.,
1999; Montrasio and Valentino, 2007; Baum et al., 2008; Liao et al.,
2011). This type of models generally accounts for the spatial variability
of the involved parameters (e.g. physical-mechanical parameters of the
slope material, rainfall intensity), thus they appear most suitable for
determining the occurrence of site-specific shallow landslides (Schilir�o
et al., 2016). However, the implementation of sufficiently representative
and accurate numerical models can be time-consuming and expensive. As
of now, numerical models are used to analyse the time-varying landslide
susceptibility, but often the idealisation in the computed model can limit
the representativeness of the case studies.
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Compared with numerical models, the data-driven models are often
more popular because of a perceived simpler process, often more accu-
rate prediction and lower costs (Corominas et al., 2005; Zhou et al.,
2018). Data-drivenmodels, especially machine learning techniques, have
been widely applied for “learning” the relationship among landslide
occurrence and landslide related predictors. Such models have also
achieved good performances.

A review of available approaches indicates that various machine
learning algorithms have been applied for modelling landslides, such as
support vector machines (Pourghasemi et al., 2013; Kumar et al., 2017),
artificial neural network (Zare et al., 2013; Arnone et al., 2014), and
decision tree (Wu et al., 2014). Recently, the performance of machine
learning methods used separately has been shown to improve signifi-
cantly when ‘ensemble’ techniques were used together, such as random
forest (RF) (Hong et al., 2016; Pourghasemi and Kerle, 2016) and the
gradient boosted regression tree (GBRT) (Dickson and Perry, 2016).
Ensemble method is a machine learning technique that combines several
base ML models to produce one optimal predictive model. Ensemble
techniques utilize multiple learning algorithms to generate hybrid
models, and can thus efficiently handle complex input to produce an
output closer to the functions modelled (Pham et al., 2018).

The objective of the present study is to demonstrate that ‘ensemble’
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Fig. 1. Spatial extent of the landslide release in study area during 2011 rainfall.
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machine learning techniques can be applied to a large, heterogeneous
area containing a number of diverse landslide typologies in order to
predict the spatial extent of shallow landslides. The following sections
present the study area in the county of Innlandet in Norway, introduce
the three well-known machine learning algorithms and describe the
geomorphological, geological, geo-environmental and anthropogenic
factors considered when modelling the spatial extent of landslides. The
relative importance of the landslide conditioning factors is analysed and
the accuracy of the ML models is compared. Data processing and analysis
was done with ArcMap 10.2 and Python 3.7.3 software.

2. Study area

The study area is in the Veikledalen Valley (61�41.560N; 9�41.650E), a
tributary to the Gudbrandsdalen Valley in Innlandet County in eastern
Norway (Fig. 1). The village of Kvam is situated at the head of Veikle-
dalen. The valley encompasses an area of about 32 km2, whereof 69%
(22 km2) is forested by a temperate broad leaf and mixed coniferous
forest. Agriculture land covers 7.2% (2.3 km2) of the area, while bog and
fell landscapes account for the remainder of the area. The area has a
subarctic climate with cold winters and warm summers. The mean
annual temperature in Kvam is about 3.3 �C (1981–2010). Mean diurnal
temperatures typically range from �22 �C to 20 �C. Approximately 500
mm of precipitation occurs annually, whereof approximately 40% as
snow.

The large-scale, regional geomorphology is characterized by U-sha-
ped, glacier-incised valleys, which formed during repeated glaciation
throughout the Quaternary. Within the study area, the elevation ranges
from approximately 250–1190 m. The geology consists of green or grey
phyllite, interlayered with grey sandstone, feldspathic sandstone and
quartzite (Siedlecka et al., 1987). The unconsolidated deposits in the
valley bottom are primarily glaciofluvial or fluvial in origin, with
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accumulations of colluvium at the base of over-steepened bedrock cliffs
(Sletten and Blikra, 2007). Glacial deposits (or till), of variable thickness,
blanket the slopes. In general, deposits are thinnest at higher elevations
(typically less than 0.5 m) while sediment cover in the valley bottom can
exceed 20 m. Locally, the till blanket is dissected by numerous small
gullies and erosion tracts, and earlier landslides. The village of Kvam is
built on a large alluvial fan at the head of Veikledalen.

2.1. Landslide inventory and event descriptions

The major natural hazards in the study area are soil slides, debris
flows and floods, snow avalanches. Rockfalls are also serious geohazards
in certain locations. The Norwegian landslide database indicates that past
events were often hydrometeorological in origin, with the timing of
release being related to periods of snowmelt or intense rainfall,
frequently in combination. The event database for the investigation in
this paper comprises landslide release zones and runout areas triggered
by the intensive rainfall on 9–10 June 2011. The inventory was compiled
from field survey observations in conjunction with high-resolution aerial
photographs taken in the weeks following the landslide events. In total,
86 landslides were identified. This 2011 intensive rainfall resulted in a
comprehensive landslide inventory and was selected for further investi-
gation in this study. The location of the landslides recorded in the
database is shown in Fig. 1.

Significant rainfall preceded the landslide event on 9–10 June 2011.
The nearest meteorological station, located at Sjoa, 7 km WNW of Kvam,
recorded 72 mm of rainfall between June 7 and 10, 2011, whereof 60
mm rainfall was reported for June 10. Air temperatures were also high
during this time, leading to intense snowmelt in high-elevation areas.
The shallow landslides triggered during this rainfall-snowmelt period
resulted in the closure of local roads, the national (Rv3) and European
(E6) highways, and closure of the railroad in Gudbrandsdalen. In total,



Table 1
Confusion matrix showing four potential outcomes of the classification (classifier).

Z. Liu et al. Geoscience Frontiers 12 (2021) 385–393
270 persons were temporarily relocated and the damages were estimated
to 800 million NOK (ca. 100 million USD). In the last decades proceeding
year 2008, landslide activity in Gudbrandsdalen was comparatively
modest. However, increased landslide occurrence was expected as a
consequence of potential increased rainfall intensity and snowmelt
(Jaedicke et al., 2008).

2.2. Preparation of the training and validation datasets

Spatial landslide mapping is considered to be a binary classification in
which the landslide index is separated into two classes, i.e., landslide and
non-landslide. Landslide pixels are assigned a value of “1”, and non-
landslide pixels are assigned a value of “0”.

In this study, the area comprised 535,839 location points, of which
3399 were release areas. To avoid unbalanced data points between
landslide and non-landslide, 6798 non-landslide points, i.e. twice the
number of release areas, were randomly selected. In total, 10,197 loca-
tion points were considered in the dataset. The 3399 landslide points
were then randomly split into two parts: 70% of the data was used for
training the ML landslide models and 30% were kept for model valida-
tion. The 6798 non-landslide points were also randomly split into the
same ratio of 70/30. This ratio of training vs validation data has been
used before for similar size of database (Tien Bui et al., 2016; Chen et al.,
2018; Yang et al., 2019).

3. Machine learning (ML) algorithms for landslide prediction

This paper compares the performance of three machine learning al-
gorithms in predicting the triggering of landslides in Kvam, Norway: the
random forest (RF), the gradient boosted regression tree (GBRT) and the
multilayer perceptron (MLP). A recent comparison of the performance of
10 advanced machine learning techniques proved that ensemble
methods, e.g. the RF and GBRT methods, showed the best performance
for modelling landslide susceptibility (Pourghasemi and Rahmati, 2018;
Dou et al., 2019; Park and Kim, 2019). An ‘ensemble’ method is a tech-
nique that creates and combines multiple models in order to improve the
final result. Furthermore, the paper looks into the multilayer perceptron
(MLP) neural networks that is another known method for landslide
spatial prediction (Zare et al., 2013; Alkhasawneh et al., 2014).

3.1. Random forest (RF) algorithm

A random forest (RF) is an ensemble learning method for classifica-
tion and regression consisting in the definition of multiple decision trees
(Breiman, 2001). The RF method generates uncorrelated decision trees
that operate as an ensemble. RF generates thousands of random decision
trees to form a forest. Each tree is grown based on a re-sampling, using a
classification and regression decision tree procedure with a random
subset of variables selected at each node (Micheletti et al., 2014; Pour-
ghasemi and Kerle, 2016; Rahmati et al., 2018; Zhang et al., 2019). Thus,
the aim of the RF is to create a large number of uncorrelated decision tree
models to produce more accurate predictions. The decisions on class
affiliation (“landslide” or “non-landslide”) and model construction are
determined by the majority vote among all trees (Micheletti et al., 2014;
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Park and Kim, 2019). In order to make reliable predictions with the
‘ensemble’model, at least two conditions should be verified: the selected
features should have some predictive ability; the prediction of the
different decision tree models need to be uncorrelated.

3.2. Gradient boosted regression tree (GBRT) algorithm

The gradient boosted regression tree (GBRT) is a model combining
two techniques: boosting and regression. These techniques are combined
to improve the model accuracy and decrease the variance. As the RF
model, the GBRT defines different decision trees to improve the perfor-
mance of the prediction taking a random subset of variables. While RF
models use the bagging method, which means that each occurrence has
an equal probability of being selected in subsequent samples, GBRT use
the boosting method in which the input data are weighted in subsequent
trees (De’Ath, 2007; Elith et al., 2008; Franklin, 2010). Basically, the
subsequent trees are useful to better define the not-corrected observa-
tions of the previous trees. The idea behind the boosting is to improve
upon the prediction of the previous trees.

In a GBRT technique, two parameters need to be specified: tree
complexity (tc) and learning rate (lr). The first defines the number of
splits of each tree. The second defines the number of trees to be built.

The GBRT technique was adopted in this study to compare with the
RF technique. Other boosting methods, e.g. Adaboost, XGBoost (Zhang
et al., 2020), could be also used for the prediction of landslide
distribution.

3.3. Multilayer perceptron neural network (MLP) algorithm

The multilayer perceptron neural network (MLP) technique is
perhaps themost popular andmost widely used artificial neural networks
(ANN). The perceptron is an algorithm for supervised learning of binary
classifiers. The ANN-MLP technique consists of three or more layers: an
input layer, an output layer and one or more hidden layers. The nodes of
the input layer are linked to the hidden layers through connections that
can have different weights as a function of their importance. The nodes of
the hidden layers receive a value that is the sum of the input variables
multiplied by the weights of their connections. The weights between the
nodes are adjusted with a learning algorithm.

The weighted sums in each nodes of the hidden layer are passed into a
nonlinear activation function. The outcome of the activation function is
then passed on to the next hidden layer or the output layer (Lek and
Gu�egan, 1999; Olden and Jackson, 2002; Franklin, 2010). The connec-
tions between the hidden layers and the output layer are also weighted.
The value at the output nodes is the result of the weighted sum of the
hidden nodes. The performance and the error of the model to predict the
real outcomes are then evaluated. The ANN-MLP utilizes a supervised
learning technique with backpropagation algorithm to reduce the dif-
ference between the actual output and the neural network output results.

3.4. Classifiers and performance indicators for the ML methods

To verify the performance of the ML models for the prediction of
spatial landslide occurrence, statistical evaluation measures based on the



Table 2
Performance indicators.

Formula Range Optimal value

ACC ¼ TPþ TN
TPþ TN þ FPþ FN

[0,1] 1

POD ¼ TP
TPþ FN

[0,1] 1

POFD ¼ FP
FPþ TN

[0,1] 0

EI ¼ TP
FPþ TPþ FN

[0,1] 1
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Receiver Operating Characteristic (ROC) analysis were adopted in this
study. The ROC analysis was first developed by engineers during World
War II for detecting enemy objects in battlefields. A binary classifier
system was used. Soon, the method was applied in many fields from
medicine to natural hazards, and machine learning.

In ROC analysis, ‘true’ class instances (observations) are compared
with hypothesised class instances (predictions or simulations) using a
classification model or classifier (Hosmer and Lemeshow, 1989; Fawcett,
2006). The observations are classified in either positive or negative
depending on whether they indicate occurrence or non-occurrence of, in
this case, a landslide. Table 1 presents the four possible outcomes of this
classification using a confusion matrix in a binary classification context,
i.e. the class labels 1 and 0 (Wilks, 1995; Accadia et al., 2003; Cepeda
et al., 2010; Staley et al., 2013). The orange and green cells in Table 1
indicate a correct classification, and the two hatched cells indicate an
incorrect classification.

Several skill scores, or performance indicators, are proposed in the
literature for the calculation of the performance indicators of the
confusion matrix. Four indicators are used for the performance evalua-
tion of the three ML methods investigated herein: Accuracy (ACC),
Probability of Detection (POD), Probability of False Detection (POFD) and
Efficiency Index (EI). The performance indicators are defined in Table 2,
along with their range and the optimal (ideal) value for a 100% reliable
prediction.

Accuracy (ACC) is the most used indicator to analyse the confusion
matrix. It gives an overall evaluation of the number of correct predictions
(TN þ TP) over the total number of predictions. The value ranges from
0 or no correct predictions, to 1 where 100% of the predictions are
correct.

Probability of Detection (POD), also called Sensitivity or Hit rate or
True positive rate, represents the rate of occurred events positively pre-
dicted, where 0 means none of the occurred events were predicted, and 1
where all the events having occurred were predicted correctly.

Probability of False Detection (POFD) is the counterpart of POD since it
measures the ratio of forecasted events to have occurred when no events
have been observed. It ranges between 0 and 1.

The last indicator for the performance evaluation of the three ML
methods is the Efficiency Index (EI), also called Threat score or Critical
success index. It is the ratio of true positives (successfully predicted
landslides) to the sum of the true positives and the unsuccessful pre-
dictions. The indicator evaluates the performance without considering
TN, which number often lies an order of magnitude above the other
classifiers in the confusion matrix (Table 1). In other words, the model
does not get credit for the correctly predicted ‘non-landslide’ situations.
Such indicator has been used for the validation of rainfall thresholds
(Tiranti and Rabuffetti, 2010; Staley et al., 2013), the performance
evaluation of landslide early warning systems (Calvello and Piciullo,
2016; Piciullo et al., 2017) and landside susceptibility mapping (Tien Bui
et al., 2016; Pham et al., 2018). Not taking into account the Efficiency
Index (EI) indicator can often lead to an overestimation of the perfor-
mance of a model (Calvello and Piciullo, 2016; Piciullo et al., 2017).

4. Landslide conditioning and triggering factors

Eight static landslide conditioning factors and three time-dependent
388
triggering factors were selected for input into the machine learning
models: slope angle, aspect, plan curvature, profile curvature, flow
accumulation, flow direction, distance to rivers, total water content,
saturation, rainfall and distance to roads, illustrated in 11 vignettes in
Fig. 2. There is no fixed list of relevant input parameters. Conditioning
and triggering factors are generally selected based on the type, scale of
the analysis and study area characteristics. The parameters selected for
this investigation were chosen based on local conditions, data availability
and the parameter relevant for a geo-mechanical analysis of a landslide.
Maps of the landslide controlling factors were converted into raster
format with a spatial resolution of 5 m � 5 m prior to sampling for the
machine learning models.
4.1. Surficial geology

A regional map of the Quaternary sediment cover (1:250,000) was
used to constrain the study area. Four main Quaternary sediment types
are present within the catchment: till (thick cover), till (thin cover),
fluvial deposits, and peat (organic material). The sediment cover is used
as a proxy to the geotechnical units and hence the mechanical properties
of the material on the most critical failure planes for landslide initiation.
The sediment type in the area selected is till with varying thickness up to
3 m.
4.2. Terrain parameters

A Digital Elevation Model (DEM) derived from LiDAR-data with 1 m
spatial resolution was used to derive the terrain parameters. To improve
the efficiency of the data processing, the 1-m DEM was resampled to
reduce the spatial resolution to 5 m. Slope angle, aspect, curvature (both
plan and profile), flow accumulation and flow direction were then
derived from the 5-m DEM. The terrain slope (Fig. 2a) is used as a proxy
for the inclination of the failure surface, which is an adequate assumption
for infinite slopes. Such as approach is commonly used in shallow land-
slide analysis like those observed in the inventory in Kvam. The other
terrain parameters (aspect, curvature, flow direction and flow accumu-
lation) account for the landforms influencing landslide susceptibility.
Aspect (Fig. 2b) identifies the downslope direction which affects mois-
ture on slopes due to rainfall. Plan curvature (Fig. 2c) and profile cur-
vature (Fig. 2d) are perpendicular to and parallel to the direction of the
maximum slope, respectively, which help understand more accurately
the flow across a surface. Flow accumulation (Fig. 2e) and flow direction
(Fig. 2f) determine accumulated flow into each cell and the flow direc-
tion from each cell to its downslope neighbour (Jenson and Domingue,
1988).
4.3. Hydrometeorological parameters

The distance to brooks and rivers (Fig. 2g) was calculated as the
minimum horizontal distance to the nearest water course. This parameter
was taken as conditioning factor (i.e., not time-dependant) as no
consideration was given to seasonal variations of the water courses. This
parameter accounts for the influence of runoff and erosion in the initia-
tion of landslides along water courses.

The water content of the soil column, percentage of soil saturation,
and rainfall were all taken as time-dependent parameters. The water
content of the soil column (Fig. 2h) and the percentage of soil saturation
(Fig. 2i) were daily values modelled and interpolated on a 1 km2 grid.
The rainfall (Fig. 2j) was obtained from hourly meteorological radar
measurements operated by the Norwegian Meteorological Office. These
three parameters were the only triggering factors considered in the an-
alyses. Each has an influence on the pore water pressure conditions (and
variations) in the ground, particularly on the critical failure planes where
the potential landslides are initiated.



Fig. 2. Illustration of selected landslide conditioning and triggering factors in study area: (a) slope angle map, (b) aspect map, (c) plan curvature map, (d) profile
curvature map, (e) flow accumulation map, (f) flow direction map, (g) distance to rivers map, (h) water content map, (i) saturation map, (j) rainfall from radar map
and (k) distance to roads map.
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4.4. Anthropogenic parameters

Distance to roads was the anthropogenic parameter involved in the
analyses. It was calculated as the minimum distance to the nearest road.
The distance to roads (Fig. 2k) can be considered as a proxy for the effects
of the presence or absence of road elements. These effects on slope sta-
bility can be either improvement or reduction of safety (e.g., a fill at the
toe or at the top of a slope, respectively), and it certainly increases the
389
level of risk (higher consequence).
4.5. Selection of controlling factors

As part of the analysis, it is essential to remove irrelevant or less
relevant factors in order to improve the efficiency and performance of
landslide models. There are several techniques to quantify the predictive
capacity of controlling factors, e.g. Information Gain Ratio (Tien Bui



Table 3
Importance (VI) of each landslide conditioning and triggering factor.

Class Conditioning and triggering
factor

Variable importance
indicator, VI

Conditioning
factors

Slope angle 0.29
Plan curvature 0.1
Aspect 0.08
Distance to rivers 0.06
Distance to roads 0.06
Flow accumulation 0.05
Flow direction 0.04
Profile curvature 0.03

Triggering factors Degree of saturation 0.11
Rainfall 0.11
Water content 0.07
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et al., 2016), Least Support Vector Machine (Pham et al., 2018) and Gini
information gain (Quinlan, 1993). The Gini information gain method was
adopted in this study to assess the relative importance of each factor.

The evaluation and comparison of the predictive capability of the 11
landslide conditioning and triggering factors with the Gini information
gain method using the RF algorithm indicate that all 11 factors contribute
to the learning of the landslide prediction model, although the degree of
each contribution differs, as indicated by the variable importance indi-
cator VI in Table 3. The results of the Gini information gain analysis show
that the slope has the highest importance (0.29), followed by plan cur-
vature (0.1), aspect (0.08), distance to rivers (0.06), distance to roads
(0.06), flow accumulation (0.05), flow direction (0.04), and profile
curvature (0.03). Saturation (0.11) and rainfall (0.11) are the second and
third most significant factors, and they are external triggering factors in
the study area. Water content (0.07) is another major factor. It can be
seen that 11 landslide controlling factors have positive values for land-
slide occurrences (VI > 0), therefore, all these factors were selected for
generating datasets for training and testing the models. It should be also
noted that the factors with lower importance (e.g. less than 0.05) could
be neglected, and would probably not affect the prediction by the ML
models.

A landslide occurrence can be described as the interaction of condi-
tioning factors and triggering factors. The slope angle is a conditioning
factor to the occurrence of landslides (i.e., in a flat area landslide
occurrence is rare). Given a certain amount of rainfall and soil with ho-
mogenous characteristics, the higher or steeper the slope, the higher the
probability of a landslide event. Moreover, the occurrence of landslides is
not exclusively a matter of rainfall, but rather a combination of several
conditioning and triggering. As shown in Table 3, the contribution of
those three triggering factors (saturation, rainfall and soil water content)
combined (0.11, 0.11, 0.07) have the same weight with the slope angle
(0.29).

5. Results of analyses and comparisons of three ML models

5.1. Establishment of landslide models

With the selected 11 controlling factors, the grid search method was
used to search the optimal parameters for each of the ML models. The
Table 4
Model performance using the training dataset.

Parameter ML model

RF GBRT MLP

True positive 2379 2379 2282
True negative 4758 4758 4540
False positive 0 0 218
False negative 1 0 97
ACC (%) 99.99 100 95.6
POD (%) 99.96 100 96
POFD (%) 0 0 4.6
EI (%) 99.96 100 87.9
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search process can be described as follows: plausible values for each
parameter are combined, and then all the combination values are used in
the training of the model. The performance metric of each combination is
typically measured by cross-validation on the training set (Hsu et al.,
2010). When all the parameter combinations have been tried, an optimal
parameter combination with the best performance is returned automat-
ically. The optimal number of decision trees, the maximum depth of the
tree and the minimum number of samples required to be at a leaf node
with the RF algorithm were 48, 25 and 1, respectively. The optimal
number of decision trees, the maximum depth of the tree, and the
learning rate with the GBRT algorithm were 104, 9 and 0.18, respec-
tively. The optimal number of neurons in the hidden layer and the reg-
ularization parameter for the MLP algorithm were 56 and 1. The solver
for weight optimization for the MLP algorithm was ‘lbfgs’ that is an
optimizer in the family of quasi-Newton methods.

Using the 11 controlling factors and the optimal model parameters,
the RF, GBRT and MLP models were built using the training dataset with
a total of 4758 non-landslide points and 2379 landslide points. Table 4
lists the parameters evaluating the performance of each model. All three
models were quite successful in terms of accuracy (ACC), but significant
differences were observed in terms of efficiency (EI). The GBRT has the
highest performance with an accuracy of 100%, followed by RF (99.99%)
and MLP (95.6%). A POD value of 1 indicates that the GBRT model
correctly classifies pixels in the landslide class in all of the cases.

Overall, Table 4 shows that the predicted landslide and non-landslide
points fitted well with the occurrence of landslides in the establishment
of the model. The model was then used to predict spatial distribution of
landslides.

5.2. Model validation

The ROC curve analysis results of different landslide models using the
validation dataset are shown in Fig. 3. The results show that the GBRT
and RF models have the highest AUC value of 0.99, followed by the MLP
model (0.97), and the TRIGRS model (0.87). Table 5 presents the pre-
dictions of landslide occurrence (and non-occurrence) for each of the RF,
GBRT and MLP model, using the validation dataset with a total of 2040
non-landslide points and 1020 landslide points. Fig. 4 illustrates the
predictions of landslide occurrence with the RF, GBRT and MLP models.
From Table 5, it is observed that GBRT has the highest performance with
an accuracy of 95.4%, followed by RF (94.7%) and MLP (92.1%). Its
efficiency is 87.3%.

The last column in Table 5 shows the performance of the results ob-
tained by using the physically-based numerical model TRIGRS (Baum et
al., 2008). TRIGRS is a hydro-mechanical model that couples infiltration
(vertical flow only) and a limit-equilibrium model using an infinite slope
assumption. The model allows modelling both unsaturated and saturated
conditions (i.e., as in an advancing wetting front). TRIGRS is suited for
shallow soil slides triggered by rainfall events with relatively short du-
rations. The output of the model is the factor of safety, FS, for each cell in
the domain. The factor of safety at a depth Z is calculated according to:

FSðZ; tÞ¼ tan φ0

tan δ
þ c0 � ψðZ; tÞγw tan φ0

γZ sin δ cos δ
(1)

where ψ(Z, t) is the pressure head response, δ is the slope angle, c' is the
effective cohesion of the soil, ϕ' is the effective friction angle of the soil,
γw is the unit weight of groundwater and γ is the total unit weight of soil.

The distribution of FS in the study area is shown in the upper right
panel in Fig. 4.

5.3. Discussion

In the development of the ML models (learning process) with the
three different algorithms, the three approaches resulted in accuracy and
probability of detection above 95%, and probability of false detection



Fig. 3. The ROC curve analysis for four landslide models using the testing dataset.
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less than 5%. The methods differed in terms of efficiency, where the
GBRT gave an efficiency of 100%, the RF 99.96% and the MLP 88%.

For prediction of landslide occurrence with the remainder of the
dataset (validation process), the three approaches again resulted in ac-
curacies above 90%. This accuracy was much better than the prediction
accuracy of the geomechanical model TRIGRS where the accuracy was
about 82%. The probability of detection and the probability of non-
detection were close to the values obtained under the learning process.
However, the efficiency was considerably reduced for the three ML
models. However, the efficiency of all three ML models was better than
that of the geomechanical model TRIGRS.

Globally, the GBRT model gave the best results, and all three ML
techniques gave a greatly improved prediction of landslide occurrence
than the geomechanical TRIGRS model.

A possible refinement of the three ML methods could be to redo
similar analyses at a few other sites to try to distinguish whether specific
controlling factors are the reason for the difference in the accuracy and
efficiency of the three ML models.
Table 5
Model prediction using the validation dataset.

Parameter Model

RF GBRT MLP TRIGRS

True positive 954 968 925 854
True negative 1944 1951 1893 1643
False positive 96 89 147 166
False negative 66 52 95 397
ACC (%) 94.7 95.4 92.1 81.6
POD (%) 93.5 94.9 90.7 68.3
POFD (%) 4.7 4.4 7.2 9.2
EI (%) 85.5 87.3 79.3 60.3
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6. Conclusions and lessons learned

The prediction of the spatial distribution of shallow landslides is
probably one of the most difficult tasks in landslide hazard and risk as-
sessments. The reliability of a spatial landslide prediction model depends
on the approach used. Physical models (e.g. centrifuge and model tests
etc) are limited because of high costs and limitations on the number of
tests that can be run, the material used for testing and the number of
locations that can be tested, and by the small scale of most of the tests run
(at least so far). Numerical models can more easily model varying con-
ditions, but often the idealisation in the computed model can limit the
representativeness of the case studies. In most cases, the numerical
models do not include three-dimensional effects. Using observations
from in situ, enhanced by machine learning techniques, presents a third
option.

Two ‘ensemble’ machine learning methods, the Random Forest and
the Gradient Boosted Regression Tree, and one neural network method,
the MultiLayer Perceptron method, were tested for the prediction of the
spatial distribution of landslides in the Kvam region in Norway. Eleven
landslide controlling factors were considered: slope angle, aspect, plan
curvature, profile curvature, flow accumulation, flow direction, distance
to rivers, water content, saturation, rainfall and distance to roads.

The performance of the threeMLmodels was evaluated quantitatively
based on the Receiver Operating Characteristic analysis. The results show
that machine learning techniques can be applied to a large, heteroge-
neous dataset containing the characteristics of diverse landslide typol-
ogies to successfully predict the spatial extent of shallow landslides.

For the three methods investigated, the random selection of training
and validation points apparently produced a training dataset that could
be very easily mapped onto the validation data. The three ML landslide
models, using the same training dataset, showed a satisfactory perfor-
mance. The results show that the ‘ensemble’ GBRT machine learning



Fig. 4. Predictions of landslide occurrence from the RF, GBRT and MLP models: black circles (True negative) represent correct predictions of non-landslide locations,
red rectangles (False negative) represent wrong predictions of actual landslide locations, blue rectangles (False positive) represent wrong predictions of non-landslide
locations, and green rectangles (True positive) represent correct predictions of actual landslide locations. The distribution of safety factors in the upper right panel was
computed by TRIGRS.
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model yielded the most promising results for the spatial prediction of
shallow landslides, with a 95% probability of landslide detection and
87% prediction efficiency compared to the actual landslides recorded in
the Kvam area during a rainy period in 2011.

The selection of the controlling conditioning and triggering factors is
a key requirement for successfully predicting landslide occurrence. In
general, topography, geology, hydrology, geomorphology, meteorolog-
ical events and anthropogenic effects are the most important controlling
factors to include in the modelling of landslides. A significance indicator
was calculated for the 11 controlling factors selected. The slope angle
proved to be the most significant conditioning factor and the three trig-
gering factors, i.e. saturation, rainfall and soil water content, were also
392
important factors.
However, the results are convincing enough to conclude that the

three ML algorithms, especially the Gradient Boosted Regression Tree
and Random Forest algorithms, are suitable to predict the spatial distri-
bution of landslides over a large area.
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