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SUMMARY

Estimating coastal tsunami impact for early-warning or long-term hazard analysis requires the
calculation of inundation metrics such as flow-depth or momentum flux. Both applications
require the simulation of large numbers of scenarios to capture both the aleatory variability and
the epistemic tsunami uncertainty. A computationally demanding step in simulating inundation
is solving the non-linear shallow water (NLSW) equations on meshes with sufficiently high
resolution to represent the local elevation accurately enough to capture the physics governing
the flow. This computational expense is particularly challenging in the context of Tsunami
Early Warning where strict time constraints apply. A machine learning (ML) model that
predicts inundation maps from offshore simulation results with acceptable accuracy, trained
on an acceptably small training set of full simulations, could replace the computationally
expensive NLSW part of the simulations for vast numbers of scenarios and predict inundation
rapidly and with reduced computational demands. We consider the application of an encoder—
decoder based neural network to predict high-resolution inundation maps based only on
more cheaply calculated simulated time-series at a limited number of offshore locations. The
network needs to be trained using input offshore time-series and the corresponding inundation
maps from previously calculated full simulations. We develop and evaluate the ML model on a
comprehensive set of inundation simulations for the coast of eastern Sicily for tens of thousands
of subduction earthquake sources in the Mediterranean Sea. We find good performance for
this case study even using relatively small training sets (order of hundreds) provided that
appropriate choices are made in the specification of model parameters, the specification of
the loss function and the selection of training events. The uncertainty in the prediction for
any given location decreases with the number of training events that inundate that location,
with a good range of flow depths needed for accurate predictions. This means that care is
needed to ensure that rarer high-inundation scenarios are well-represented in the training sets.
The importance of applying regularization techniques increases as the size of the training
sets decreases. The computational gain of the proposed methodology depends on the number
of complete simulations needed to train the neural network, ranging between 164 and 4196
scenarios in this study. The cost of training the network is small in comparison with the cost
of the numerical simulations and, for an ensemble of around 28 000 scenarios, this represents
a 6- to 170-fold reduction in computing costs.
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by solving the non-linear shallow water (NLSW) equations (LeV-

I INTRODUCTION eque & George 2008; de la Asuncion et al. 2013a; Behrens & Dias

Tsunamis pose potentially devastating consequences to coastal pop- 2015) on high-resolution digital elevation models (DEMs). This
ulations, and may inundate several kilometres inland far from their is typically performed using a nested or telescopic grid with in-
origin (e.g. Mori et al. 2022). Numerical simulations are essen- creasingly fine spatial resolution and is normally the part of the
tial to tsunami hazard assessment. Inundation is usually modelled simulation dominating the time-to-solution. In forecasting, such as
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Probabilistic Tsunami Hazard Assessment (PTHA, e.g. Geist &
Parsons 2006; Grezio et al. 2017) or tsunami early warning [e.g.
Probabilistic Tsunami Forecasting (PTF), Selva e al. 2021], consid-
erable uncertainty surrounds to the earthquake source. Quantifying
this uncertainty demands a Monte Carlo-type analysis encompass-
ing ensembles of many scenarios. An adequate representation of
source variability can demand ensembles containing from thou-
sands to millions of scenarios (e.g. Selva er al. 2016). For large
ensembles, the necessary number of high resolution NLSW calcu-
lations needed can render the task computationally infeasible. It is
only recently, with great advances in computational resources and
efficient and optimized codes, that it has become at all possible (e.g.
Gibbons et al. 2020).

The need to overcome the computational cost associated with
solving the NLSW equations is long established. One option is
to reduce the number of simulations by a careful subselection of
scenarios. The properties of high-resolution inundation maps are
linked to other observables in the tsunami modelling process, such
as offshore wave heights or low-resolution inundation maps, and
these parameters may guide the selection of scenarios (Lorito et al.
2015; Sepulveda et al. 2017; Volpe et al. 2019; Williamson et al.
2020; Davies et al. 2022). For tsunami early warning, similar prin-
ciples can be applied with databases of precomputed inundation
scenarios. Predictions are made by selecting the most appropriate
scenario in the database by matching offshore time-series (Gusman
et al. 2014; Setiyono et al. 2017; Tanioka & Gusman 2018) or low
resolution inundation grids (Mulia et al. 2018). Increasingly, there
has been a move towards the application of machine learning (ML)
to estimate directly near-shore time-series or inundation (e.g. Mulia
et al. 2020; Fauzi & Mizutani 2020; Liu e al. 2021; Rodriguez et al.
2022; Kamiya et al. 2022). Direct approaches based on Gaussian
Processes have also been applied (Salmanidou et al. 2017; Fuku-
tani et al. 2021, 2023; Tozato et al. 2022). The potential of ML
to predict inundation metrics rapidly from sensor data or simula-
tion output has led to its implementation in ‘end-to-end” workflows
aimed at early warning based in closer-to-source measurements (e.g.
Makinoshima ef al. 2021; Nufiez et al. 2022; Rim et al. 2022; Mulia
et al. 2022).

Here we seek to use ML to reduce the cost of a single simula-
tion so that sufficient numbers can be performed, either within an
available time-frame or with the available computational resources.
We assume that the benchmarked NLSW model simulations ac-
curately reproduce the inundation for each tsunami scenario. The
least expensive part of an NLSW calculation is the offshore wave
propagation on the coarsest of the nested grids, from which we
record offshore time-series at locations with a water depth close
to 50 m (a depth at which the linear shallow water approximation
holds reasonably well). The high resolution inundation simulation
on the finer grids is significantly more expensive computationally
(the computational time increases by a factor 8 for a factor 2 re-
duction in grid size). Fig. 1(a) displays an inundation calculation
for the coastline of Eastern Sicily near Catania, resulting from a
large subduction earthquake, using a 4-level system of nested grids.
Our hypothesis is that, given an adequate training set of inunda-
tion calculations from the complete nested-grid simulations, we can
predict inundation maps using ML from the offshore time-series
alone (Fig. 1b). Given sufficiently accurate predictions, and a suf-
ficiently rapid and efficient training process, we would be able to
reduce greatly the time-to-solution for tsunami simulations. This is
a goal in itself for PTF (Selva et al. 2021) in the Urgent Computing
mode where a large set of numerical simulations are conducted on
the fly (Levholt ez al. 2019; Ejarque et al. 2022; Folch et al. 2023).
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However, even without critical time constraints, a reduction of com-
putational expense would increase the number of calculations that
can be performed for the same computational cost. We emphasize
that the ML approach presented here is specific to a given stretch
of coastline as the inundation for a given offshore wave input is
highly sensitive to local topo-bathymetry. Every stretch of coastline
for which the hazard analysis is performed will therefore require a
number of full simulations to be performed for generating training
sets. For this approach to have a significant advantage, the training
set must be far smaller than the number of inundation maps required
for each specific site of interest.

We investigate encoder—decoder type models that can represent
geometrically complex spatial patterns with a latent space of rela-
tively small dimension (see Fig. 2). In the example displayed, our
higher dimensional input is also a high resolution inundation map.
However, this input could also be the offshore time-series calcu-
lated in the inundation calculations. The encoder transforms the
time-series to the low-dimensional latent space and the decoder
predicts the inundation map from these parameters. We establish a
set of criteria by which success of such a process can be evaluated:

(i) We demand a significant improvement in the time-to-solution
relative to the full numerical simulation: our primary motivation.

(i) We demand that it be possible using a relatively modest train-
ing set. Each member of the training set is a complete numerical
simulation and, given that the procedure is site-specific, an over-
whelming number of necessary training events would defeat the
objective.

(iii)) We demand an acceptable level of accuracy in the predic-
tions. Significant underestimates or overestimates of the inundation
are equally undesirable.

(iv) We demand that the model works well in the tails of the
distribution (the long-tail problem). The tsunamis that generate the
most significant inundation are at the high-impact, low-probability,
end of the distribution. An ML model trained on an event set culled
from the higher probability portion of the scenarios would likely
lack a basis on which to estimate the more extreme inundation.

Our tasks are to determine the extent to which an ML tsunami in-
undation model or emulator can fulfill these criteria, to find optimal
methods and model architectures, and to determine the demands on
the training sets. We anticipate criterion (i); for a trained model, an
ML prediction will likely be rapid compared with the numerical sim-
ulation. Criteria (ii) and (iii) are competing aims; gains in one will
likely lead to losses in the other. (The predictive capability of any
learning algorithm is subject to the Bias-variance trade-off: overfit-
ting versus underfitting.) Criterion (iv) puts even harsher demands
on the size of the training set and the success of ML prediction of
tsunami inundation will lie in finding an optimal balance between
criterion (ii) and the demands (iii) and (iv).

The data set consists of the subduction earthquake scenarios for
the seismic PTHA of Gibbons et al. (2020): 27 985 scenarios in
total. The geographical distribution of the subduction earthquakes
is displayed in Fig. 3 together with histograms for the magnitude
distributions for the different source regions. The scenarios were se-
lected based upon a hazard disaggregation from the NEAMTHM 18
Tsunami Hazard Model (Basili et al. 2021) and feature stochastic
slip distributions on triangular meshes modelling the subduction
zones. For each of the main subduction scenarios, there are several
stochastic realizations of the slip distributions; the form of the slip
distribution can affect the impact significantly (e.g. Melgar et al.
2019; Davies 2019). The simulations were carried out using the
Tsunami-HySEA model (de la Asuncion et al. 2013b) within the
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(a) Inundation simulation on nested grid system

Numerical simulation on coarse grid
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Figure 1. Estimation of high-resolution tsunami inundation using (a) a full numerical simulation on a four-level system of nested grids and (b) using a
numerical simulation on a single level with the inundation prediction map calculated using Machine Learning, with the offshore time-series as input, where
the inundation patterns have been learned from a training set of a limited number of full simulations. The colours in all panels indicate the maximum water
height throughout the duration of the simulation of a subduction earthquake in the Hellenic Arc. This is a scenario from the PTHA study of Gibbons et al.
(2020) and the black symbols indicate the locations of the time-series outputs for these simulations. These locations are separated by between 2 and 4 km and
are approximately on the 50m depth isobath. Time-series from a total of 16 locations were exploited in the current study: the 13 locations visible and 3 just
outside of the region displayed. The grids labelled 0, A, B and C have resolution 640 m, 160 m, 40 m and 10 m, respectively. The contour lines in panels (a) and
(b) indicate elevation/depth with intervals of 200 m, 50 m and 5 m in grids A, B and C respectively. The numbers in panel (b) are the indices of the offshore

time-series locations.

ChEESE project (Center of Excellence for Exascale in the Solid
Earth: Folch ef al. 2023). Its GPU-accelerated framework allows
faster-than-real-time (FTRT) implementation, suitable for Tsunami
Early Warning Systems (TEWS). Extensive testing and validation
have previously been conducted (Macias et al. 2017, 2020a, b)
against laboratory tests and benchmark problems (Synolakis et al.
2008) for its use in tsunami propagation and inundation studies.
The relatively high number of high resolution inundation calcula-
tions make this data set ideal for studying sensitivity to the size of
the training sets.

In Section 2, we outline the methodology, model architecture
and considerations regarding parameter specifications and oper-
ational requirements. In Section 3, we evaluate the performance
of a single model with a single set of parameter specifications

and a single training set. In Section 4, we examine the sen-
sitivity of the performance to changes in the model specifica-
tion and in the size and requirements of the training set. Fi-
nally, in Section 5 we summarize findings and discuss subsequent
strategy.

2 METHODOLOGY

In this study, we take the offshore simulated sea level time-series
and apply a convolutional neural network (CNN) to predict an on-
shore intensity measure. We consider both the maximal inunda-
tion height (MIH; the maximum height of the water surface rel-
ative to the initial sea level) and the maximal flow depth (dyax;
the maximum height of the water surface over the ground). Note
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Figure 2. An encoder—decoder architecture for representing the high-dimensional inundation maps with vectors of parameters with far lower dimension. The
dimensions of the latent space and the values depicted in the layers of the encoder and decoder are purely illustrative. Only a single hidden layer is displayed
for both decoder and encoder; in practice there can be many. The maximum flow-depth map on the left is an actual simulation output. The map on the right

depicts an imperfect reconstruction of this map.

that di. and MIH have in principle a 1-1 mapping, but they may
have different properties with regards to the ability to emulate
them.

In the simulations, time-series were calculated at virtual tide-
gauges around most of the coastlines: even in regions far from the
inundation grids. Only the 16 virtual tide-gauges closest to the in-
undation grids were selected for the prediction of the inundation
maps in the Bay of Catania; these 16 locations cover the extent of
coastline over which incoming tsunami waves are likely to inun-
date the region of interest. The Tsunami-HySEA code writes out
time-series based on the finest grid present at that location and we
performed convergence tests to verify that time-series output using
only the coarsest resolution at these locations showed a satisfactory
similarity to those output using the fully nested grid. The full 4 hr
of simulation time was exploited for the current study, which will
also include reflected waves. Values were written out every 30 s of
simulation time, resulting in 481 time-samples per simulation per
virtual sensor. All time-series start at the origin time of the earth-
quake and so the arrival time of the first wave will increase with
distance.

The highest-resolution grid in the PTHA study of Gibbons et al.
(2020) has 912 pixels in the longitudinal direction and 2224 in the
latitudinal direction: a total of just over 2 million 10 m by 10 m
cells. Many points will never be inundated due to high elevation,
and locations out at sea are not targets for inundation hazard as-
sessment. 418 908 of these cells are flooded in at least one of the
scenarios. Fig. 4 displays the mapping from wave height time-series
to the inundation maps using an encoder—decoder, via the lower-
dimensional latent space. The time-series and inundation maps are
from simulations in the data set and provide an impression of the
variability the model will need to accommodate. The following sec-
tions address the model architecture, the specification of the loss
function, and selection of the training events.

2.1 Model architecture

Given the extensive flexibility in the design of a potential neu-
ral network, we limit the study by specifying a relatively simple
generic model structure (Fig. 5) within which a few key parameters
can be varied. The encoder consists of three consecutive layers of
convolutions, each followed by a max pool layer (see Table 1). A
convolutional layer (CL) computes the inner product between a set
of kernels (the weights) and subwindows of the input with the same
dimensions as the kernels. The CL is usually followed by the ap-
plication of an activation function. We have used a leaky rectified
linear unit (Leaky ReLU) with a coefficient 0f 0.01 (Xu et al. 2015).
A max pooling layer records the maximum over subwindows of a
specific size. Inspired by (Krizhevsky ef al. 2012), the pooling lay-
ers are evaluated on overlapping windows. Through the application
of convolutions and pooling layers, the output value depends only
on a local part of its input, known as its receptive field. The stack-
ing of multiple CLs with small kernels, interlaid with max pooling
layers, is an efficient way of ensuring a large receptive field with
respect to the input (in terms of the number of parameters) and is a
common structure used for feature extraction in image analysis (Si-
monyan & Zisserman 2015). It is commonly understood that more
complex features of the input are imaged by the deeper layers with
a larger receptive field. In the current architecture, we expect im-
portant complex features associated with non-linear interactions of
the inundation process, typically depending on different properties
of the incoming wave and associated with different locations and
times.

It is desirable for the network to map a zero input to zero out-
put (a zero wave amplitude offshore should result in zero onshore
flow-depth). This would be achieved readily by setting the bias of
each layer to zero. However, non-zero biases are needed to ensure
the flexible construction of non-linear features. As an intermediate
approach, ensuring that the desired property is acquired easily in
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Figure 3. Representation of the tsunamigenic subduction earthquakes in the data set. (a) Geometry of cells that define the subduction zones with a relative
measure of slip at each location integrated over the total number of scenarios. (b) Histogram of scenarios as a function of M, (moment magnitude) for
earthquakes in the Calabrian arc (5396 scenarios). (c) Corresponding histogram for the Hellenic arc (22 562 scenarios). (d) Corresponding histogram for the
Cyprian arc (27 scenarios). Note that the vast majority of sources are in the Hellenic arc. The sets of scenarios for the Hellenic and Cyprian arcs are dominated
by large magnitude earthquakes. The Calabrian arc is far closer to Catania and the data set includes relatively higher numbers of lower magnitude earthquakes

here.

the training process, we skip the bias in the first three CLs. The 1
x 1 CL is there to increase the non-linearity of the encoder without
affecting the receptive field (Simonyan & Zisserman 2015). It also
acts to reduce the number of parameters in the model by reducing
its output dimension.

Temporarily ignoring randomly selected neurons by setting their
output to zero during training is known as dropout and is used to
reduce overfitting and improve generalization (Krizhevsky et al.
2012; Srivastava et al. 2014). The number of ignored neurons is
quantified by the dropout rate, counting the ratio between the num-
ber of ignored neurons to the total number of neurons. To reduce
overfitting, we apply dropout before the first dense layer (see Ta-
ble 1). The use of dropout in the fully connected layers induces
a model-averaging effect, and is particularly useful in the case of
small data sets (Brigato & locchi 2020). A dropout rate 0.5 is sug-
gested to be close to optimal (Srivastava et al. 2014). The dropout

rate could be optimized for the different network choices and with
respect to the size of the training set. However, it is here kept fixed
at 0.5.

The final output, y, is related to the input of the final layer A
according to

$7(1) = leakyReLU (Z rw! + b”) . 1

i

where p denotes the pixel of the image and {w?, ..., w}, b”} .
are the weights of the layer. The final layer resembles a basis for the
inundation maps. Approximately 99 per cent of the model parame-
ters belong to this last layer. How many basis elements are necessary
to obtain good accuracy? In most cases, we fix the number of basis
elements at 64. (It is set to 32 in a few models.)

20z Ae g uo 1senb Aq £28/59//28€/1L/8€z/810n1e/B/woo dno-olwspeoe//:sdpy wolj pspeojumoq


art/ggae151_f3.eps

3’ %]‘\/\AMW"V’“ Encoder
=

%2 ﬂww

1 WW

0 60 120 180 240
time(min)

Decoder
—l

|

34— A A A A e a1 Encoder Decoder

——

i
E

- T
0 60 120 180 240
time{min)

|

| Encoder Decoder

sensor

|

o 60 120 180 240
time(min)

Encoder
—_—

j

Decoder
—_—

sensor

0 60 120 180 240
time(min)

ML emulation for inundation maps 387

Figure 4. Transformation of waveforms to inundation maps via the latent space. The time-series on the left are from simulations carried out for the PTHA in
Gibbons ef al. (2020) and the inundation maps to the right show the corresponding flow depths. (22 km of the coastline of the Bay of Catania is displayed and
the maps are rotated with the south-to-north direction horizontally for the purpose of display.) The representations of only four input waveforms out of the 16
used in the study and the latent space vectors in the middle are purely illustrative. The arrows labelled decoder and encoder can represent models of any type

or complexity.

2.2 Loss function

The dy. and the MIH for each pixel are both potential tsunami
intensity metrics for the neural network. At the boundary of the
inundation, the MIH is equal to the topography, t, and the dp.y is
zero. Beyond this, at greater elevation, the dyy,, can unambiguously
be declared to be zero. A natural extension of MIH is given by
letting MIH := t 4 djn. . Given the 1-1 mapping between dy,, and
MIH, for a given topography, 7, they provide an equivalent metric
of the tsunami hazard. However, the application of d,,x or MIH
as a target gives rise to different loss functions. Let m be a model
predicting the MIH, y, such that J = m(n, 0), where n denotes the
offshore time series and 6 the model parameters. Let Z denote the
predefined set of pixels that are potentially inundated. Applying the
£2 norm directly yields the following loss associated with the MIH.

L(ﬁ,y)=%2

2 A~
Pp— el =115 = yIB. )

peL

where |Z| denotes the number of pixels in Z, so that the £? norm is
normalized with respect to the size of the region. Alternatively, we
can apply the fact that the dp., , is always non-negative and correct
the prediction according to / = (y — r)*, where (x)* := max (x,

0) denotes the positive part. Applying the ¢2-norm to the corrected
prediction yields a (relaxed) loss associated with the dp,,x given by

LG =10 -0 =@ -0l=17 -1l 3)
The objective associated with the training set 7 = {n;, 7, y; }*,
and the loss L, is given by

1 N
L0, T) = D Lmni, 0), ) + R(O), )
i=1

where R(0) is a weight penalization term defined below. The objec-
tive £ is defined similarly with respect to L, (for the dy,x values).
Note that L > L, so that £(6, T) > L.(0, T). We have the choice
of minimizing either the loss function £ defined with respect to the
MIH, or the loss function £, defined with respect to the dp,x. How
does the choice of loss function impact the trained model? Let us
outline a few possible implications.

(1) As L does not penalize predictions below 7, minimizing £
implies more flexibility for the model. This may lead to a better fit
but could also make it more prone to overfitting.

(if) Using L the gradient vanishes once y, < 7,,. This makes it
difficult to ‘push’ the predicted value upwards during training.
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Figure 5. 3-D diagram of the network architecture for the model with m = 8 and / = 8 described in Table 1. Let the x-axis of a 3-D right handed orthogonal
coordinate system be located along the propagation of information, marked by the grey arrows, from left- to right-hand side. On the left-hand side, in the
yz-plane, the input data is represented by a heatmap of the wave amplitude measured at the offshore POIs. One unit length along the y-axis (Time), represents
10 times the number of pixels as one unit length on the z-axis (POls). The transparent orange boxes represents the convolutional layers and are sized according
to their output dimensions. The dimension along the x-axis, the depth, represents the number of kernels. Each of the three initial convolutional layers are
followed by a max pooling layer represented by a thin red box. The pooling layers keeps the depth fixed, but shrinks the spatial and temporal dimensions.
Therefore, they are only depicted according to their temporal and spatial output dimension. The dense layers are represented by purple boxes. As information
propagates from every node, it is no longer meaning full with a spatial or temporal resolution. The number of nodes is loosely represented by the size of the
boxes. In the final layer, each node represents the prediction at a specific location, as represented by the inundation map shown in the yz-plane at the right-hand

side.

Table 1. The network architecture. Each line in the table represents the
consecutive operations performed by the network starting at the first line.
The conv-mp 3x3-m refers to a convolutional layer with m kernels of
dimension 3 x3 followed by a max pooling layer of the same size. While the
convolutions are applied to every subwindow, the pooling layers are applied
to subwindows displaced relative to each others according to the stride. The
dense layers are simply recorded according to their output dimension. The
architecture has been evaluated on combinations of (m, /) set to (32, 16), (8,
8), (8, 4) and (8,2).

Layer Stride Bias Padding

conv-mp 3 x3-m (1,2) No 0

conv-mp 3 x5-2m 2,3) No 0

conv-mp 3 x5-4m (2,3) No 1 Encoder
conv-1x1-4m (1,1) Yes 0

dropout - 0.5 - - -

dense - / - Yes -

dense - 64 - Yes - Decoder
dense - Output - Yes -

Note that L. and L may be seen as extremes. Using a Leaky-
ReLU instead of simply taking the positive value enable us to choose
something in between. To avoid the problems associated with (ii),

L loss is henceforth defined by replacing ( - )* with a Leaky-ReLU
with a coefficient of 0.01 in eq. (3).

To reduce overfitting we applied ¢> weight penalization. In gen-
eral,

R(O) = p. Y _I6:13+ pa y_ 16513 )
i i

where 0! and 0} are the weights associated with the i-th layer of
the encoder and the decoder, respectively, and || - ||, is the £ norm,
normalized according to the number of weights. For most of the
models tested p, = pqs = 107>, but some experiments with higher
weight penalization have also been carried out (see Section 4).

2.3 Selection of training and test sets

Finding an appropriate and limited set of scenarios on which to
train an ML model is a challenge. The 27 985 scenarios selected
(the subduction earthquake sources) have sources located a signifi-
cant distance from the coast, meaning that coseismic displacements
at the shoreline are negligible. 15000 scenarios were reserved for
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selection of the training sets (basis set) while the remaining scenar-
ios were used for testing. We cannot use the inundation maps from
the simulation for selecting the training set since we assume that we
only have the offshore time-series calculations at the outset. How-
ever, it is instructive to examine the ranges of potential inundation
calculated by Gibbons et al. (2020) and the corresponding offshore
wave heights in order to understand the selection criteria that might
apply. Fig. 6 displays the percentage of scenarios in the PTHA that
inundate a given map pixel with a given flow depth. Great regions
of the map are inundated for either no scenarios or very few (e.g.
significantly below 1 per cent). Other regions (along the shoreline
and the river) are inundated in almost every scenario.

Fig. 7 displays relative histograms for metrics of both the onshore
inundation (panels a and b) and the offshore time-series (panel c).
The two metrics for the onshore inundation are the total area of
inundation (i.e. the area that experiences a maximum flow depth
greater than zero) and the global MIH. Both distributions show
long tails: many scenarios resulting in minimal inundation and great
inundation for very few scenarios. The offshore histograms (panel
c) are exceptionally consistent from one offshore location to the
next and have far less significant tails.

To select suitable training sets, the 15 000 scenarios contained in
the basis set were binned according to the (square) maximum abso-
lute amplitude at the selected offshore locations. A fixed maximal
number of scenarios were selected randomly from each bin for train-
ing (Fig. 8a). This means that the proportion of scenarios selected
rises in each bin with increasing maximum amplitude, ensuring that
the largest scenarios are well-represented in each training set. The
resulting training sets, applied in this study are shown in Table 2.
Fig. 8(b) displays the effect of this subselection procedure on the
distribution of the maximum flow depth, the maximum wave ampli-
tude and the inundated area for the training set t591 (see Table 2).

3 SYSTEMATIC EVALUATION OF AN
ML INUNDATION EMULATOR

Before considering the impact of the size of training set, and model
parameters, we inspect some results for a single model. To this
end we select the model with m = 8 and / = 8 trained on the
training set t591, using the £ loss associated with the maximal
flow depth. Fig. 9(a) displays the loss £ as a function of the weight
updates on the training and test set, respectively. The model was
trained using a batch size 10 and the Adam optimizer (Kingma
& Ba 2017) with (default) parameter settings n = 0.001 and 8 =
(0.9, 0.999). The loss displayed in Fig. 9(a) is the average over
the scenarios in each batch. The training procedure was stopped
after 80 000 weight updates. While the loss stabilized after about
20000 weight updates on the test set, the training loss continued to
decrease for the training set. To mitigate overfitting, we select the
model obtained after 40 000 weight updates. As seen in Fig. 9(b),
the frequency of large inundations is higher in the training set than
the test set. Furthermore, the £2-error with respect to the flow depth
(i.e. ||}‘ — f1l»), scales approximately linearly with the ¢£>-norm of
the flow depth (||f]|2). This explains why the loss is in general higher
on the training set. Fig. 9(b) indicates that the model is subject to
a degree of overfitting (the £2-error is smaller for scenarios in the
training set than for scenarios in the test set). This is particularly
clear for the scenarios with larger inundations.

Fig. 10 displays the predicted flow depth (Prediction), the sim-
ulated flow depth (Target) and the residual (Target-Prediction), for
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a single scenario from the test set. The scenario is selected by ar-
ranging all the cases according to increasing £'-error and picking
the scenario such that 99.9 per cent have a £'-error less than the
selected case. (In other words, this is one of the predictions with the
greatest error.) To best visualize how well the emulator-predicted
flow-depths match those calculated in the numerical simulations,
Fig. 11 displays scatter plots, with one symbol per tsunami sce-
nario, for 12 selected locations in the Bay of Catania. A number of
the locations are along the shoreline, many with an essentially zero
elevation. Others are located further inland with elevations ranging
from 1 meter to several meters. A symbol above the line y = x in
each of the panels represents a scenario for which the ML model
underestimated the calculated inundation at that location and a sym-
bol below the line represents a scenario for which the ML model
overestimated the inundation. Each of the scatter plots in Fig. 11
is annotated with the corresponding Coefficient of Determination,
2. The higher 7? values for the scatter plots to the right of Fig. 11
indicate that the model predictions better explain the target values
for the locations along the shoreline. For the near-shore locations
that experience the greatest inundation (i.e. locations 10, 12, 20 and
24 in Fig. 11), we note that the accuracy of the predictions is better
for the smallest and greatest inundation scenarios than it is for those
scenarios between the extremes. The high accuracy associated with
high flow depths may be explained by the high frequency of large
inundations in the training set. The high accuracy for very small
flow depths along the shoreline indicates that the model succeeds at
mapping a zero signal to zero inundation.

Fig. 12 displays the 7 value at all locations on the inundation grid
using a colour scale. The 72 values in Fig. 12(a) (the training set) are
significantly higher than the corresponding values in Fig. 12(b). This
confirms that the model is subject to a certain degree of overfitting.
Fig. 12(b) shows how the quality of the predictions (+*) diminishes
as we move away from the shoreline and the 7> map is qualitatively
similar to the inundation count map (Fig. 6). This tells us that the
quality of the prediction at a given pixel is likely directly related
to the number of scenarios resulting in inundation at that pixel. In
Fig. 12(c), we quantify the connection between the 7* value for a
given pixel for the test set and the number of inundations at that
pixel in the training data. For ? to exceed 0.8 at a given pixel,
we should have had over 100 scenarios in the training data that
showed inundation at that pixel. For 7% to exceed 0.9, we should
have inundation at that point for over 200 scenarios in the training
data.

The performance of simulated tsunamis relative to observations
is frequently evaluated using Aida’s number (Aida 1978). Here we
use it to assess the accuracy of predictions versus simulations. Let
P;, S; be the predicted and the simulated flow-depth at locations 1
< i < N.Let K; = S,;/P;. Aida measured the accuracy in terms of a
geometric mean ratio K given by

N
log(K) = Y log (K.). ©
i=1

Note that K may be considered as a kind of correction factor. Its
standard deviation

N 1/2
1
log(k) = (N > [dtog(s:/ Py — (1og(1<))2]) (7)
i=1
is a measure of the fluctuation of this correction factor.

To evaluate the models accuracy for different flow depths, pixels
where classified according to simulated flow depths in the ranges [0,
0.2),[0.2, 1), [1, 3) and [3, 00), labelled class 14, respectively. For
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Figure 6. The proportion of earthquake tsunami scenarios from the PTHA study of Gibbons ef al. (2020) that exceed the indicated flow depth as a function
of location in the Bay of Catania. A total of 32363 scenarios resulted from the hazard disaggregation and so lilac-coloured regions for example are locations
at which fewer than 323 scenarios in the data set exceed the indicated inundation. Panels (a), (b), (c¢) and (d) correspond to flow depths exceeding 0 m, 0.5
m, 1 m and 4 m, respectively. Note that this figure indicates the inundation from all of the scenarios in the PTHA. Only a subset of these scenarios (those
corresponding to subduction earthquake scenarios) are exploited in the current study.

each scenario in the test set, Aida’s numbers K and « were calculated
for depth classes 2, 3 and 4, given that there were more than 100
pixels in the given class. Due to the definition of K, only pixels
where the predictions where nonzero are considered. Similarly, the
mean residual and the 95 per cent quantile of the absolute value of
the residual was calculated. The results are displayed in Fig. 13. K
is the geometric mean ratio of the relation between the simulated
and the predicted flow depth. Consequently too high predictions are
associated with K < 1 while too small predictions are associated
with K > 1. While the model is in general unbiased, a slight tendency
towards too high predictions for small flow depths, and too small
predictions for large flow depths is visible both from Figs 13(a) and
(c). The fluctuation of the ratio between simulated and predicted
flow depth (for each prediction) is measured by «. Fig. 13(d) shows
that the ratio between predicted and simulated values is more spread
out for the smaller flow depths. This is not surprising due to the
increased sensitivity of the ratio K for smaller predicted flow depths.
Note that small flow depths can be associated with the shoreline
predictions for small inundations, or predictions further inland for
larger inundations. Comparing with Figs 11 and 12, these two cases
behave quite differently in terms of predictive accuracy, and perhaps
also in terms of bias. Further comparison with Fig. 11 agrees well
with the impression that the relative accuracy is higher for higher
flow depths. Figs 13(a) and (b) reveals that the absolute values
of the residuals are in general higher for larger flow depths. The
reduction in |K — 1| with increasing flow depth indicates sublinear
growth of the residual with respect to flow depth. Note that this does
not conflict with the fact that the £2 error increases approximately
linearly with the ¢2-norm. This is because the large inundations
have non-zero flow depths over a larger area.

4 SENSITIVITY OF PERFORMANCE TO
MODEL PARAMETERS AND TRAINING
SETS

Selecting model architecture, loss function, optimization procedure
and training set is a challenging task. To this end, a range of different
models have been fitted to the training sets described in Section 2.3.
Here, we examine how prediction accuracy varies with the size
of the training set, the choice of loss function and the model ar-
chitecture. Adjusting the size of m (the number of Kernels in the
convolutional layers) and / (the dimension of the latent space) is one
way of adjusting the flexibility of the model. Another option is to
adjust the loss function and the training procedure. We encode the
model specifications into the coded model names with a core of the
form mc8_14 meaning 8 Kernels in the convolutional layers and 4
parameters in the latent space (cf. Table 1). Specifying in addition
the training set employed (cf. Table 2) leads to a model code of the
form t164_mc8_14. Applying a ReLU in the loss function (¢f. eq. 3)
results in appending _rel to the model code (i.e. t164 mc8_14_rel)
and an increased weight penalization for the loss £ is denoted with
an additional _reg (for increased regularization).

The adjustment of model parameters is not possible without some
means of evaluation. While single number statistics may help to
compare different models, it is frequently insufficient in terms of
model adjustment. A statistic like the mean £,-error over the test set
reveals the average accuracy, but tells us little about the properties
of the model. (This is especially due to the dependence of the error
on the size of the inundation.) It can be much more illuminating to
use a size-error scatter plot of the training and test sets. Size-error
plots form the basis for the following discussion, while ¢,-error
statistics for different models are available in Table 3.
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Figure 7. Histograms for (a) area in km? inundated, (b) Maximum Inundation Height in m over all initially dry locations and (c) maximum height at the
offshore locations 36, 37, 38 and 39 as labelled in Fig. 1b). The basis for the plot is the same 32 363 scenarios from Gibbons et al. (2020) displayed in Fig. 6
and all bars are scaled to display the percentage of the total number of scenarios.
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Figure 8. Selection of the training set t591. (a) Size of the 15 bins in the randomly chosen basis set and the number of randomly selected scenarios from each
bin used in the training set. (b) Box plot of the maximum flow depth, the maximum wave amplitude at the offshore POIs and the size of the inundated area for

the training set t591 and the randomly chosen basis set.

Fig. 14 compares the results of fitting the model with m = 8 and /
= 8 (named mc8_18) on differently sized training sets and with the
loss functions £ (MIH) and £ (dax)- Both models, independent
of the loss function, perform far better on the training set than

on the test set for the smaller training sets (t164 and t295). An
improvement is evident for training set t591, but only for t1831 is
there good overlap of the performance on the test and training sets.
Along the dashed lines, the ¢,-error has the same size as the £,-norm.
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Table 2. Selection of different training sets used in the paper. All scenar-
ios are sorted by the maximum offshore wave amplitude squared prior to
placement in bins.

Label Max scenarios per bin Total scenarios
t4196 1000 4196
t1831 300 1831
t591 70 591
295 30 295
t164 15 164

We always want points to lie below this line (¢,-error < €,-norm)
although the severity of the consequences of error increases with
increasing ¢,-norm (along the x-axis).

The cusp-shaped contour for model t164_mc8_18_rel indicates
that the model maps a certain subset of the scenarios to a rela-
tively small (almost) constant inundation map. This is confirmed
by inspecting the pointwise predictions in scatter plots similar to
the ones shown in Fig. 11. This may be seen as a kind of degen-
eracy of the model towards a mean prediction on a subset of the
input. For a very small number of scenarios with low actual in-
undation, the model t295_mc8_18_rel predicts some erroneously
large inundations. This is a consequence of overfitting and results
from the model recognizing certain features associated with large
inundation-scenarios in the training set, that are not physically as-
sociated with large inundation. This is, in turn, the result of too
flexible a model or an insufficient training set. Case-by-case in-
spection of these erroneous predictions reveals some occurrences
of non-physical patterns in the predicted inundation maps (for ex-
ample with low flow depth along the shore and higher flow depths
further inland). Careful analysis of spurious emulations should help
us both to find robust methods for automatically detecting them
and for improving the models so that they can be avoided. The
models trained using the £ loss tend to yield a nearly constant er-
ror for scenarios below a certain size (seen as a flattening of the
size-error plots in the top row of Fig. 14). The L-loss leaves the
model with less flexibility due to the penalization of predictions
below the topography (cf. Section 2.2). This rigidity appears to
make the model unable to fit the smaller scenarios. This hypothe-
sis is supported by the fact that the ‘kink’ does not vanish using a
larger training set. (If anything, the tendency is most pronounced
for the largest training set, t1831.) Further inspection of the models
trained using the £ loss shows a tendency to predict small posi-
tive values far from the shore, even for scenarios with relatively
small inundation. This non-physical behaviour is explained by the
penalization of predictions below the topography by the loss func-
tion L.

Fig. 15 displays size-error plots of the models mc8_14_rel and
mc8_12 rel, with latent space dimensions of only 2 and 4, respec-
tively, trained on the training sets t164, 295 and t591. Reducing
the dimension of the latent space is expected to enforce more reg-
ularization. The clearly visible cusps appearing at slightly different
locations for the training sets t164 and t295 reveals that the mod-
els shows signs of degeneracy as was also the case for the model
t164_mc8-18_rel in Fig. 14. For the larger training set t591, no
cusps are visible. Although this degeneracy might only represent
a local minima, it seems to be a feature associated with (very)
low dimensional latent spaces. We note that the model mc8_12_rel
seems to perform well on the training set t591 compared with both
mc8_18_rel and in particular mc8_14_rel.

Fig. 16 displays size-error plots for a single set of / and m pa-
rameters (m = 32 and / = 16), trained on four different training

sets (t164, 1295, t591 and t1831) using the loss function £, with
different degrees of weight regularization. For the smaller train-
ing sets, especially t164, the tendency to overfit for the model
mc32_116_rel is greater than we have observed so far. The model
t591 mc32_116_rel also erroneously predicts large inundations
for some scenarios with very low actual inundation. These models
tend to fit the data faster. While 40 000 weight updates is early stop-
ping for mc8_18_rel, this is not the case for these models. Note that
there is no sign of a ‘cusp’ in the plots for mc32_116_rel (center
row). Due to the larger parameter space, a second round of train-
ing was carried out with an increased weight penalization for the
loss £ and early stopping for the data sets t164 and t295 (middle
row). To this end, p., and p; were set to 0.05 and 0.01 respectively,
cf. eq. (5) on t591 and t1831, while p, was set to 0.1 for t164 and
t295. The model was labeled mc32_116_rel_reg and trained using
60000 weight updates for t591 and t1831, 20 000 weight updates
for t295, and 10 000 weight updates for t164. On the data set t1831,
the increased regularization does not have a big impact except the
‘kink” introduced for very small inundations. This may be due to
the loss being dominated by the weight penalization term for small-
inundation scenarios. Considering the data set t591, the increased
weight penalization has led to more stable predictions, and a better
overlap of the training and test sets. There are fewer large inunda-
tion scenarios with relatively high error, and performance is better
for the intermediate-inundation scenarios. Furthermore, there are
no scenarios with low inundation that are erroneously ascribed high
inundation. However, the general prediction quality for very small
scenarios has been reduced. For the smaller training sets t295 and
t164, there is a considerable improvement. It is most likely the early
stopping that had the most regularizing effect. On t295, the regular-
ized model appears to have a better fit than the t591_mc8.18_rel
visualized in Section 3. For the data sets t164 and t295, a couple
of further adjustments were done to increase regularization of the
model (bottom row); a reduction in the model parameters was in-
troduced by reducing the output dimension of the 1x1 CL to m
= 32 (c¢f- eq. 1). Furthermore, the weight penalization was further
increased to p, = pys = 10. The batch size was also increased
to 30 and training was stopped at 20 000 weight updates. For this
model the loss stabilized both on the training and the test set af-
ter about 5000 weight updates. Fig. 16 shows that the training and
test sets have good overlap. Furthermore, predictions are relatively
accurate also for very small scenarios, indicating that weight pe-
nalization does not necessarily introduce a ‘kink’ as was observed
for mc32_116_rel_reg on t591 and t1831. It should however be
mentioned that the accuracy is in general reduced. Closer inspec-
tion reveals that the overall reduced accuracy is associated with a
bias towards underestimation.

5 DISCUSSION AND CONCLUSIONS

We have explored the capability of convolutional encoder—decoder
based neural networks to predict high-resolution tsunami inundation
maps based on simulated offshore time-series. The primary motiva-
tions are for increased speed and reducing the computational cost.
This is relevant for deep-sea tsunami simulation if large numbers
of scenarios need to be simulated to explore the natural tsunami
source variability. It is especially important for the very expensive
numerical calculation of local inundation; the calculation of the
offshore time-series is far cheaper. If we can simulate the offshore
time-series, and then use an ML-based model to predict the final
outcome, we may process much larger parameter spaces for the
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Figure 10. (a) Target dmax, f, (b) predicted dimax., ;‘ and (c) residual (f — }”) measured in meters for a given scenario in the test set. The scenario is selected
by taking the 99.9 per cent quantile of the £!-error of the predictions on the test set. Panels (a) and (b) demonstrate the similarity of the simulated inundation
map and that predicted by the emulator. The locations at which the emulator overestimates the inundations are coloured blue and the locations at which the

emulator underestimates the modelled inundation are labelled red.

same computational cost, reduce time-to-solution in urgent tsunami
computations, and simulate massive ensembles more cheaply. A
tsunami hazard analysis can require tens of thousands of numerical
simulations. A ML-based emulator will require a training set con-
taining a sufficient number of inputs and outputs, representative of
the range required. The cost of calculating the training examples,
and the cost of training the model, should be significantly smaller
than the cost of computing the complete set of numerical simula-
tions. The model would be required to cope across the range of
anticipated impact and provide predictions with a satisfactory level
of accuracy.

We have designed an encoder—decoder based model in which
the input time-series map to the output inundation maps via a la-
tent space with a far lower dimension than either inputs or outputs.
We have tested the performance of the model with respect to key
parameters m (the number of Kernels in the convolutional layers
of the encoder), / (the dimension of the latent space), the size and
constitution of the training set and strategy for training the model.
If a single most important requirement were to be isolated, it would
be that every location at which inundation is to be estimated has
to have been inundated in an adequate number of scenarios in the
training set. Assessing the accuracy of predictions as a function of
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inundated a given location before 7> consistently exceeds a value of 0.8.
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Figure 13. Evaluation metrics for the model described in Section 3. Box plots of mean residual flow depth (a), 95 per cent quantile of the absolute value of

ML emulation for inundation maps 395

0.2 -

Depth class

2.00 -

175 -

1.50 -

1.25 -

==

3
Depth class

the residual (b), Aida’s numbers K (eq. 6) and « (eq. 7) on the test set estimated for different flow depth classes. Classes 1-4 corresponding to depths [0, 0.2),

[0.2, 1), [1, 3) and [3, oo) m, respectively.

Table 3. Table of mean (mean_I2) and 95 per cent-quantile (q95_12) of the £2-error on the test set for different models
presented in Section 4. The models with X in the code, for example mc32X_116_rel_reg also involve a reduction in

the dimension of the output of the 1 x I-convolutional layer.

Model Variable t4196 t1831 t591 1295 t164
mc32.116_rel mean_I2 0.0168 0.0235 0.0220 0.0268 0.0358
q95-12 0.0385 0.0526 0.0529 0.0700 0.0948
mc32_116_rel_reg mean_|2 0.0191 0.0243 0.0267 0.0267
q95-12 0.0452 0.0619 0.0671 0.0710
mc8_18_rel mean_I2 0.0201 0.0214 0.0246 0.0285 0.0344
q95-12 0.0472 0.0480 0.0583 0.0668 0.0884
mc8.18 mean_I2 0.0212 0.0246 0.0277 0.0299 0.0298
q95-12 0.0492 0.0514 0.0602 0.0684 0.0765
mc8_14_rel mean_12 0.0261 0.0305 0.0354
q95-12 0.0607 0.0724 0.0872
mc8_12_rel mean_|2 0.0270 0.0319 0.0325
q95-12 0.0665 0.0720 0.0825
mc32X_116_rel mean_|2 0.0324 0.0316 0.0351
q95-12 0.0783 0.0771 0.0872
mc32X_116_rel_reg mean_|2 0.0344 0.0358
q95-12 0.0831 0.0875

location indicates that models perform far better at locations close
to the shoreline (inundated for almost all scenarios with a wide
range of inundation heights) than for locations further inland and at
higher elevations (inundated for only the more extreme scenarios).
An acceptable accuracy for prediction at a given location appears to
require inundation from at least 100-200 scenarios in the training
set. That this will apply to as large a part of the domain as possible

requires training sets with the order of several hundred scenarios.
This suggests a major reduction in computational cost compared
with the number of earthquake scenarios needed for the high reso-
lution PTHA at this specific site (Gibbons ez al. 2020). Comparable
ML based emulators like the ones presented in Makinoshima et al.
(2021), Nuiez et al. (2022) and Mulia ef al. (2022) apply training
sets on the order of several thousand scenarios.
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Figure 14. Scatter plots of the ¢;-norm (prediction size, horizontal axis) against the ¢,-error (prediction error, vertical axis) shown for the model mc8_18
and mc8_18_rel trained on the training sets t164, t295, t591 and t1831. Each blue dot represents a single scenario in the test set, while each orange diamond
represents a scenario from the training set. The models trained using the £ loss are labelled mc8_18_rel due to the application of a ReLU in the loss function

(cf. eq. 3).

t164_mc8_I2_rel t295_mc8_I2_rel t591_mc8_I2_rel

10° / 10° ’ 10° 7z

107!

107?

107! 10° 10 107! 10° 10 107! 10°

Figure 15. Scatter plots of the £;-norm (horizontal axis) against the £;-error (vertical axis) shown for the model mc8_14_rel and mc8_-12_rel trained on the
training sets t164, t295 and t591. Each blue dot represents a single scenario in the test set, while the orange diamonds represents scenarios from the training set.
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Figure 16. Scatter plots of the ¢,-norm (horizontal axis) against the £,-error (vertical axis) shown for the model mc32.116_rel (top row) trained on the
training sets t164, t295, t591 and t1831. A second round of optimization, increasing the weight penalization by setting p, = 0.05 and p; = 0.01, cf. eq. (5)
was carried out. The resulting models are labeled mc32_116_rel_reg (third row). The last row shows the result of further regularization (p, = ps = 10) and
reducing the parameters in the model by reducing the dimension of the output of the 1x 1-convolutional layer to m = 32. The models with X in the code,
for example mc32X_116_rel_reg also involve a reduction in the dimension of the output of the 1 x 1-convolutional layer. Each blue dot represents a single
scenario in the test set, while the orange diamonds represents scenarios from the training set.

We acknowledge that the size of the training set is dependent on
the local topography, and the variability of the scenarios. A more
complex morphology could potentially result in more complex in-
teractions between the incoming wave and the coast, and in turn
necessitate a larger training set. In this paper, we restricted our at-
tention to the scenarios with distant subduction earthquake sources.
To apply the model to the full data set requires the inclusion of
scenarios with perhaps different wavelengths originated by smaller
crustal sources and/or significant coseismic displacement locally at
the inundated site (Volpe ez al. 2019). To cope with scenarios with
significant local coseismic displacements, it will have to be included
as an input to the neural network. As such, we acknowledge the need
to extend the method to account for a wider set of sources, including
local coseismic displacements.

Determining the scenarios to be selected for calculating the train-
ing set is challenging given that we will not know a priori how the
inundation maps will look for each simulation; we need to choose
them on the basis of the offshore time-series. The more extreme
scenarios, likely to generate inundation at locations far inland need
to be disproportionately well represented in the training set in or-
der to provide adequate predictions for those locations only prone
to inundation for the low-probability, high-impact, tail of the set

of scenarios. In this paper, selection was carried out based on the
binning of scenarios by their maximum offshore wave amplitude.
This selection procedure could be improved by taking into account
other types of variability. In applications, it is most likely difficult
to assess a priori the number of training samples necessary to reach
a required level of accuracy. A potential solution is to construct an
adaptive selection procedure.

In this study, the raw time-series output from the simulations
is provided as input to a convolutional neural network. 16 virtual
tide-gauge locations were selected (those locations surrounding the
Bay of Catania), and the entire simulation time (4 hr) was used
for every scenario. These are rational choices to make but the
consequences of these choices, and the sensitivity of the emula-
tions to the input specifications, will need to be examined. Us-
ing the full duration of the simulation time will mean that the
distance from the source is encoded implicitly in the input. Re-
ducing the duration of the time-series used (with the arrival time
accounted for), limiting the number of time-series exploited, and
altering the treatment of the input data (for example by extracting
waveform features rather than raw waveforms) are all candidates
for comprehensive sensitivity studies, but beyond the scope of this

paper.
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Overfitting is observed in numerous situations where the freedom
in the model is too great and/or the training set too limited. We find
it beneficial to minimize a loss function based upon the maximal
flow-depth rather than the maximal inundation height. The latter
requires a penalization of negative values that can result in artificial
non-zero emulated inundation at locations that should remain dry.
Choosing the dimension of the latent space is a nontrivial problem.
Our investigations show that a too low dimensional latent space,
may ‘disconnect’ the encoder and the decoder over a substantial
subset of the input space, producing ‘degenerate behaviour’ and
poor prediction. It is also associated with relatively slow and unsta-
ble fitting of the model. Models with a slightly higher dimensional
latent space and an increased number of kernels tend to fit the data
faster and in a more consistent manner, but are more prone to over-
fitting. Applying dropout, early stopping and weight penalization
are effective means to counteract overfitting. Increased weight pe-
nalization appears to increase the stability of the models, but also
introduces a bias in the predictions.

In this paper, attention has been on the construction of reliable
emulators suitable for relatively small training sets. As such, no
weighting of the scenarios has been applied for training or evalua-
tion. In the perspective of risk analysis, it could make sense to tailor
the fitting of the emulator to optimize the accuracy of the predicted
risk. This may be done both by selection of the training set or by
weighting of the selected scenarios in the loss function. We note
that this is most important considering less flexible models trained
on relatively small data sets.
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