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S U M M A R Y 

Estimating coastal tsunami impact for earl y-w ar ning or long-ter m hazard analysis requires the 
calculation of inundation metrics such as flow-depth or momentum flux. Both applications 
require the simulation of large numbers of scenarios to capture both the aleatory variability and 

the epistemic tsunami uncertainty. A computationally demanding step in simulating inundation 

is solving the non-linear shallow water (NLSW) equations on meshes with suf ficientl y high 

resolution to represent the local ele v ation accuratel y enough to capture the physics governing 

the flow. This computational expense is particularly challenging in the context of Tsunami 
Early Warning where strict time constraints apply. A machine learning (ML) model that 
predicts inundation maps from offshore simulation results with acceptable accuracy, trained 

on an acceptably small training set of full simulations, could replace the computationally 

e xpensiv e NLSW part of the simulations for vast numbers of scenarios and predict inundation 

rapidly and with reduced computational demands. We consider the application of an encoder–
decoder based neural network to predict high-resolution inundation maps based only on 

more cheaply calculated simulated time-series at a limited number of offshore locations. The 
network needs to be trained using input offshore time-series and the corresponding inundation 

maps from pre viousl y calculated full simulations. We de velop and e v aluate the ML model on a 
comprehensive set of inundation simulations for the coast of eastern Sicily for tens of thousands 
of subduction earthquake sources in the Mediterranean Sea. We find good performance for 
this case study even using relati vel y small training sets (order of hundreds) provided that 
appropriate choices are made in the specification of model parameters, the specification of 
the loss function and the selection of training events. The uncertainty in the prediction for 
an y gi ven location decreases with the number of training e vents that inundate that location, 
with a good range of flow depths needed for accurate predictions. This means that care is 
needed to ensure that rarer high-inundation scenarios are well-represented in the training sets. 
The importance of applying regularization techniques increases as the size of the training 

sets decreases. The computational gain of the proposed methodology depends on the number 
of complete simulations needed to train the neural network, ranging between 164 and 4196 

scenarios in this study. The cost of training the network is small in comparison with the cost 
of the numerical simulations and, for an ensemble of around 28 000 scenarios, this represents 
a 6- to 170-fold reduction in computing costs. 
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1  I N T RO D U C T I O N  

Tsunamis pose potentially devastating consequences to coastal pop- 
ulations, and may inundate several kilometres inland far from their 
origin (e.g. Mori et al . 2022 ). Numerical simulations are essen- 
tial to tsunami hazard assessment. Inundation is usually modelled 
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robabilistic Tsunami Hazard Assessment (PTHA, e.g. Geist &
arsons 2006 ; Grezio et al . 2017 ) or tsunami earl y w arning [e.g.
robabilistic Tsunami Forecasting (PTF), Selva et al . 2021 ], consid-
rable uncertainty surrounds to the earthquake source. Quantifying
his uncertainty demands a Monte Carlo-type analysis encompass-
ng ensembles of many scenarios. An adequate representation of
ource variability can demand ensembles containing from thou-
ands to millions of scenarios (e.g. Selva et al . 2016 ). For large
nsembles, the necessary number of high resolution NLSW calcu-
ations needed can render the task computationally infeasible. It is
nl y recentl y, with great adv ances in computational resources and
fficient and optimized codes, that it has become at all possible (e.g.
ibbons et al . 2020 ). 
The need to overcome the computational cost associated with

olving the NLSW equations is long established. One option is
o reduce the number of simulations by a careful subselection of
cenarios. The properties of high-resolution inundation maps are
inked to other observables in the tsunami modelling process, such
s offshore wave heights or low-resolution inundation maps, and
hese parameters may guide the selection of scenarios (Lorito et al .
015 ; Sep úlveda et al . 2017 ; Volpe et al . 2019 ; Williamson et al .
020 ; Davies et al . 2022 ). For tsunami earl y w arning, similar prin-
iples can be applied with databases of precomputed inundation
cenarios. Predictions are made by selecting the most appropriate
cenario in the database by matching offshore time-series (Gusman
t al . 2014 ; Setiyono et al . 2017 ; Tanioka & Gusman 2018 ) or low
esolution inundation grids (Mulia et al . 2018 ). Increasingly, there
as been a move towards the application of machine learning (ML)
o estimate directly near-shore time-series or inundation (e.g. Mulia
t al . 2020 ; Fauzi & Mizutani 2020 ; Liu et al . 2021 ; Rodr ́ıguez et al .
022 ; Kamiya et al . 2022 ). Direct approaches based on Gaussian
rocesses have also been applied (Salmanidou et al . 2017 ; Fuku-

ani et al . 2021 , 2023 ; Tozato et al . 2022 ). The potential of ML
o predict inundation metrics rapidly from sensor data or simula-
ion output has led to its implementation in ‘end-to-end’ w orkflo ws
imed at early warning based in closer-to-source measurements (e.g.
akinoshima et al . 2021 ; N ú ̃ nez et al . 2022 ; Rim et al . 2022 ; Mulia

t al . 2022 ). 
Here we seek to use ML to reduce the cost of a single simula-

ion so that sufficient numbers can be performed, either within an
vailable time-frame or with the available computational resources.
e assume that the benchmarked NLSW model simulations ac-

urately reproduce the inundation for each tsunami scenario. The
east e xpensiv e part of an NLSW calculation is the of fshore w ave
ropagation on the coarsest of the nested grids, from which we
ecord offshore time-series at locations with a water depth close
o 50 m (a depth at which the linear shallow water approximation
olds reasonably well). The high resolution inundation simulation
n the finer grids is significantly more e xpensiv e computationally
the computational time increases by a factor 8 for a factor 2 re-
uction in grid size). Fig. 1 (a) displays an inundation calculation
or the coastline of Eastern Sicily near Catania, resulting from a
arge subduction earthquake, using a 4-level system of nested grids.
ur hypothesis is that, given an adequate training set of inunda-

ion calculations from the complete nested-grid simulations, we can
redict inundation maps using ML from the offshore time-series
lone (Fig. 1 b). Given sufficiently accurate predictions, and a suf-
ciently rapid and efficient training process, we would be able to
educe greatly the time-to-solution for tsunami simulations. This is
 goal in itself for PTF (Selva et al . 2021 ) in the Urgent Computing
ode where a large set of numerical simulations are conducted on

he fly (Løvholt et al . 2019 ; Ejarque et al . 2022 ; Folch et al . 2023 ).
o wever , even without critical time constraints, a reduction of com-
utational expense would increase the number of calculations that
an be performed for the same computational cost. We emphasize
hat the ML approach presented here is specific to a given stretch
f coastline as the inundation for a given offshore wave input is
ighl y sensiti ve to local topo-bathymetr y. Ever y stretch of coastline
or which the hazard analysis is performed will therefore require a
umber of full simulations to be performed for generating training
ets. For this approach to have a significant advantage, the training
et must be far smaller than the number of inundation maps required
or each specific site of interest. 

We investigate encoder–decoder type models that can represent
eometrically complex spatial patterns with a latent space of rela-
i vel y small dimension (see Fig. 2 ). In the example displayed, our
igher dimensional input is also a high resolution inundation map.
o wever , this input could also be the offshore time-series calcu-

ated in the inundation calculations. The encoder transforms the
ime-series to the low-dimensional latent space and the decoder
redicts the inundation map from these parameters. We establish a
et of criteria by which success of such a process can be e v aluated:

(i) We demand a significant improvement in the time-to-solution
elative to the full numerical simulation: our primary motivation. 

(ii) We demand that it be possible using a relati vel y modest train-
ng set. Each member of the training set is a complete numerical
imulation and, given that the procedure is site-specific, an over-
helming number of necessary training events would defeat the
bjective. 
(iii) We demand an acceptable level of accuracy in the predic-

ions. Significant underestimates or overestimates of the inundation
re equally undesirable. 

(iv) We demand that the model works well in the tails of the
istribution (the long-tail problem). The tsunamis that generate the
ost significant inundation are at the high-impact, low-probability,

nd of the distribution. An ML model trained on an event set culled
rom the higher probability portion of the scenarios would likely
ack a basis on which to estimate the more extreme inundation. 

Our tasks are to determine the extent to which an ML tsunami in-
ndation model or emulator can fulfill these criteria, to find optimal
ethods and model architectures, and to determine the demands on

he training sets. We anticipate criterion (i); for a trained model, an
L prediction will likely be rapid compared with the numerical sim-

lation. Criteria (ii) and (iii) are competing aims; gains in one will
ikely lead to losses in the other. (The predictive capability of any
earning algorithm is subject to the Bias-variance trade-off: overfit-
ing versus underfitting.) Criterion (iv) puts even harsher demands
n the size of the training set and the success of ML prediction of
sunami inundation will lie in finding an optimal balance between
riterion (ii) and the demands (iii) and (iv). 

The data set consists of the subduction earthquake scenarios for
he seismic PTHA of Gibbons et al . ( 2020 ): 27 985 scenarios in
otal. The geographical distribution of the subduction earthquakes
s displayed in Fig. 3 together with histograms for the magnitude
istributions for the different source regions. The scenarios were se-
ected based upon a hazard disaggregation from the NEAMTHM18
sunami Hazard Model (Basili et al . 2021 ) and feature stochastic
lip distributions on triangular meshes modelling the subduction
ones. For each of the main subduction scenarios, there are several
tochastic realizations of the slip distributions; the form of the slip
istribution can affect the impact significantly (e.g. Melgar et al .
019 ; Davies 2019 ). The simulations were carried out using the
sunami-HySEA model (de la Asunci ón et al . 2013b ) within the
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Figure 1. Estimation of high-resolution tsunami inundation using (a) a full numerical simulation on a four-level system of nested grids and (b) using a 
numerical simulation on a single level with the inundation prediction map calculated using Machine Learning, with the offshore time-series as input, where 
the inundation patterns have been learned from a training set of a limited number of full simulations. The colours in all panels indicate the maximum water 
height throughout the duration of the simulation of a subduction earthquake in the Hellenic Arc. This is a scenario from the PTHA study of Gibbons et al . 
( 2020 ) and the black symbols indicate the locations of the time-series outputs for these simulations. These locations are separated by between 2 and 4 km and 
are approximately on the 50m depth isobath. Time-series from a total of 16 locations were exploited in the current study: the 13 locations visible and 3 just 
outside of the region displayed. The grids labelled 0, A, B and C have resolution 640 m, 160 m, 40 m and 10 m, respecti vel y. The contour lines in panels (a) and 
(b) indicate ele v ation/depth with interv als of 200 m, 50 m and 5 m in grids A, B and C respecti vel y. The numbers in panel (b) are the indices of the offshore 
time-series locations. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/1/382/7657823 by guest on 27 M

ay 2024
ChEESE project (Center of Excellence for Exascale in the Solid 
Earth: Folch et al . 2023 ). Its GPU-accelerated framework allows 
faster -than-real-time (FTRT) implementation, suitab le for Tsunami 
Early Warning Systems (TEWS). Extensive testing and validation 
have pre viousl y been conducted (Mac ́ıas et al . 2017 , 2020a , b ) 
against laboratory tests and benchmark problems (Synolakis et al . 
2008 ) for its use in tsunami propagation and inundation studies. 
The relati vel y high number of high resolution inundation calcula- 
tions make this data set ideal for studying sensitivity to the size of 
the training sets. 

In Section 2 , we outline the methodology, model architecture 
and considerations regarding parameter specifications and oper- 
ational requirements. In Section 3 , we e v aluate the performance 
of a single model with a single set of parameter specifications 
and a single training set. In Section 4 , we examine the sen- 
sitivity of the performance to changes in the model specifica- 
tion and in the size and requirements of the training set. Fi- 
nally, in Section 5 we summarize findings and discuss subsequent 
strategy. 

2  M E T H O D O L O G Y  

In this study, we take the offshore simulated sea level time-series 
and apply a convolutional neural network (CNN) to predict an on- 
shore intensity measure. We consider both the maximal inunda- 
tion height (MIH; the maximum height of the water surface rel- 
ative to the initial sea level) and the maximal flow depth ( d max ; 
the maximum height of the water surface over the ground). Note 

art/ggae151_f1.eps
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Figure 2. An encoder–decoder architecture for representing the high-dimensional inundation maps with vectors of parameters with far lower dimension. The 
dimensions of the latent space and the values depicted in the layers of the encoder and decoder are purely illustrative. Only a single hidden layer is displayed 
for both decoder and encoder; in practice there can be many. The maximum flow-depth map on the left is an actual simulation output. The map on the right 
depicts an imperfect reconstruction of this map. 
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hat d max and MIH have in principle a 1-1 mapping, but they may
ave different properties with regards to the ability to emulate
hem. 

In the simulations, time-series were calculated at virtual tide-
auges around most of the coastlines: even in regions far from the
nundation grids. Only the 16 virtual tide-gauges closest to the in-
ndation grids were selected for the prediction of the inundation
aps in the Bay of Catania; these 16 locations cover the extent of

oastline over which incoming tsunami waves are likely to inun-
ate the region of interest. The Tsunami-HySEA code writes out
ime-series based on the finest grid present at that location and we
erformed convergence tests to verify that time-series output using
nly the coarsest resolution at these locations showed a satisfactory
imilarity to those output using the fully nested grid. The full 4 hr
f simulation time was exploited for the current study, which will
lso include reflected waves. Values were written out every 30 s of
imulation time, resulting in 481 time-samples per simulation per
irtual sensor. All time-series start at the origin time of the earth-
uake and so the arri v al time of the first wave will increase with
istance. 

The highest-resolution grid in the PTHA study of Gibbons et al .
 2020 ) has 912 pixels in the longitudinal direction and 2224 in the
atitudinal direction: a total of just over 2 million 10 m by 10 m
ells. Many points will never be inundated due to high elevation,
nd locations out at sea are not targets for inundation hazard as-
essment. 418 908 of these cells are flooded in at least one of the
cenarios. Fig. 4 displays the mapping from wave height time-series
o the inundation maps using an encoder–decoder, via the lower-
imensional latent space. The time-series and inundation maps are
rom simulations in the data set and provide an impression of the
ariability the model will need to accommodate. The following sec-
ions address the model architecture, the specification of the loss
unction, and selection of the training events. 
a  
.1 Model ar chitectur e 

iv en the e xtensiv e fle xibility in the design of a potential neu-
al network, we limit the study by specifying a relati vel y simple
eneric model structure (Fig. 5 ) within which a few key parameters
an be varied. The encoder consists of three consecutive layers of
on volutions, each follo wed by a max pool lay er (see Tab le 1 ). A
onv olutional lay er (CL) computes the inner product between a set
f kernels (the weights) and subwindows of the input with the same
imensions as the kernels. The CL is usually followed by the ap-
lication of an acti v ation function. We have used a leaky rectified
inear unit (Leaky ReLU) with a coefficient of 0.01 (Xu et al . 2015 ).
 max pooling layer records the maximum over subwindows of a

pecific size. Inspired by (Krizhevsky et al . 2012 ), the pooling lay-
rs are e v aluated on overlapping windows. Through the application
f convolutions and pooling layers, the output value depends only
n a local part of its input, known as its receptive field. The stack-
ng of multiple CLs with small kernels, interlaid with max pooling
ayers, is an ef ficient w ay of ensuring a large receptive field with
espect to the input (in terms of the number of parameters) and is a
ommon structure used for feature extraction in image analysis (Si-
onyan & Zisserman 2015 ). It is commonly understood that more

omplex features of the input are imaged by the deeper layers with
 larger receptive field. In the current architecture, we expect im-
ortant complex features associated with non-linear interactions of
he inundation process, typically depending on different properties
f the incoming wave and associated with different locations and
imes. 

It is desirable for the network to map a zero input to zero out-
ut (a zero wave amplitude offshore should result in zero onshore
o w-depth). This w ould be achieved readily by setting the bias of
ach layer to zero. Ho wever , non-zero biases are needed to ensure
he flexible construction of non-linear features. As an intermediate
pproach, ensuring that the desired property is acquired easily in

art/ggae151_f2.eps
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Figure 3. Representation of the tsunamigenic subduction earthquakes in the data set. (a) Geometry of cells that define the subduction zones with a relative 
measure of slip at each location inte grated ov er the total number of scenarios. (b) Histogram of scenarios as a function of M w (moment magnitude) for 
earthquakes in the Calabrian arc (5396 scenarios). (c) Corresponding histogram for the Hellenic arc (22 562 scenarios). (d) Corresponding histogram for the 
Cyprian arc (27 scenarios). Note that the vast majority of sources are in the Hellenic arc. The sets of scenarios for the Hellenic and Cyprian arcs are dominated 
by large magnitude earthquakes. The Calabrian arc is far closer to Catania and the data set includes relati vel y higher numbers of lower magnitude earthquakes 
here. 
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the training process, we skip the bias in the first three CLs. The 1 
× 1 CL is there to increase the non-linearity of the encoder without 
affecting the receptive field (Simonyan & Zisserman 2015 ). It also 
acts to reduce the number of parameters in the model by reducing 
its output dimension. 

Temporaril y ignoring randoml y selected neurons b y setting their 
output to zero during training is known as dropout and is used to 
reduce overfitting and improve generalization (Krizhevsky et al . 
2012 ; Sri v astav a et al . 2014 ). The number of ignored neurons is 
quantified by the dropout rate, counting the ratio between the num- 
ber of ignored neurons to the total number of neurons. To reduce 
overfitting, we apply dropout before the first dense layer (see Ta- 
ble 1 ). The use of dropout in the fully connected layers induces 
a model-averaging effect, and is particularly useful in the case of 
small data sets (Brigato & Iocchi 2020 ). A dropout rate 0.5 is sug- 
gested to be close to optimal (Sri v astav a et al . 2014 ). The dropout 
rate could be optimized for the different network choices and with 
respect to the size of the training set. Ho wever , it is here kept fixed 
at 0.5. 

The final output, ˆ y , is related to the input of the final layer λ
according to 

ˆ y p ( λ) = leakyReLU 

( ∑ 

i 

λi w 

p 
i + b p 

) 

, (1) 

where p denotes the pixel of the image and 
{
w 

p 
1 , . . . , w 

p 
N , b 

p 
}N 

p= 1 
are the weights of the layer. The final layer resembles a basis for the 
inundation maps. Approximately 99 per cent of the model parame- 
ters belong to this last layer. How many basis elements are necessary 
to obtain good accuracy? In most cases, we fix the number of basis 
elements at 64. (It is set to 32 in a few models.) 

art/ggae151_f3.eps
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Figure 4. Transformation of waveforms to inundation maps via the latent space. The time-series on the left are from simulations carried out for the PTHA in 
Gibbons et al . ( 2020 ) and the inundation maps to the right show the corresponding flow depths. (22 km of the coastline of the Bay of Catania is displayed and 
the maps are rotated with the south-to-north direction horizontally for the purpose of display.) The representations of only four input waveforms out of the 16 
used in the study and the latent space vectors in the middle are purel y illustrati ve. The arrows labelled decoder and encoder can represent models of any type 
or complexity. 

2

T  

i  

i  

z  

b  

l  

M  

o  

a  

p  

o  

p  

�

w  

n  

c  

t  

0  

p

a

L

w  

t  

N  

o  

M  

d  

o

i  

b
 

d

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/1/382/7657823 by guest on 27 M

ay 2024
.2 Loss function 

he d max and the MIH for each pixel are both potential tsunami
ntensity metrics for the neural network. At the boundary of the
nundation, the MIH is equal to the topography, τ , and the d max is
ero. Beyond this, at greater ele v ation, the d max can unambiguously
e declared to be zero. A natural extension of MIH is given by
etting MIH : = τ + d max . Given the 1-1 mapping between d max and

IH, for a given topography, τ , they provide an equivalent metric
f the tsunami hazard. Ho wever , the application of d max or MIH
s a target gives rise to different loss functions. Let m be a model
redicting the MIH, y , such that ˆ y = m ( η, θ ) , where η denotes the
ffshore time series and θ the model parameters. Let I denote the
redefined set of pixels that are potentially inundated. Applying the
 

2 norm directly yields the following loss associated with the MIH. 

L ( ̂ y , y) = 

1 

| I | 
∑ 

p∈ I 

∣∣ ˆ y p − y p 
∣∣2 = : ‖ ̂ y − y‖ 2 2 , (2) 

here | I | denotes the number of pixels in I, so that the � 2 norm is
ormalized with respect to the size of the re gion. Alternativ ely, we
an apply the fact that the d max , f , is al wa ys non-ne gativ e and correct
he prediction according to ˆ f = ( ̂ y − τ ) + , where ( x ) + : = max ( x ,
) denotes the positi ve part. Appl ying the � 2 -norm to the corrected
rediction yields a (relaxed) loss associated with the d max gi ven b y 

L + ( ̂ y , y) = ‖ ( ̂ y − τ ) + − ( y − τ ) ‖ 2 2 = ‖ ̂  f − f ‖ 2 2 (3) 

The objective associated with the training set T = { ηi , τi , y i } N i= 1 
nd the loss L , is given by 

 ( θ, T ) = 

1 

N 

N ∑ 

i= 1 
L ( m ( ηi , θ ) , y i ) + R( θ ) , (4) 

here R ( θ ) is a weight penalization term defined below. The objec-
ive L + is defined similarly with respect to L + (for the d max values).
ote that L ≥ L + so that L ( θ, T ) ≥ L + ( θ, T ) . We have the choice
f minimizing either the loss function L defined with respect to the
IH, or the loss function L + defined with respect to the d max . How

oes the choice of loss function impact the trained model? Let us
utline a few possible implications. 

(i) As L + does not penalize predictions below τ , minimizing L + 
mplies more flexibility for the model. This may lead to a better fit
ut could also make it more prone to overfitting. 
(ii) Using L + the gradient vanishes once ˆ y p < τp . This makes it

ifficult to ‘push’ the predicted value upwards during training. 

art/ggae151_f4.eps
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Figure 5. 3-D diagram of the network architecture for the model with m = 8 and l = 8 described in Table 1 . Let the x -axis of a 3-D right handed orthogonal 
coordinate system be located along the propagation of information, marked by the grey arrows, from left- to right-hand side. On the left-hand side, in the 
yz -plane, the input data is represented by a heatmap of the wave amplitude measured at the offshore POIs. One unit length along the y -axis (Time), represents 
10 times the number of pixels as one unit length on the z -axis (POIs). The transparent orange boxes represents the convolutional layers and are sized according 
to their output dimensions. The dimension along the x -axis, the depth, represents the number of kernels. Each of the three initial conv olutional lay ers are 
followed by a max pooling layer represented by a thin red box. The pooling layers keeps the depth fixed, but shrinks the spatial and temporal dimensions. 
Therefore, they are only depicted according to their temporal and spatial output dimension. The dense layers are represented by purple boxes. As information 
propagates from every node, it is no longer meaning full with a spatial or temporal resolution. The number of nodes is loosely represented by the size of the 
boxes. In the final layer, each node represents the prediction at a specific location, as represented by the inundation map shown in the yz -plane at the right-hand 
side. 

Table 1. The network architecture. Each line in the table represents the 
consecutive operations performed by the network starting at the first line. 
The conv-mp 3 ×3-m refers to a convolutional layer with m kernels of 
dimension 3 ×3 followed by a max pooling layer of the same size. While the 
convolutions are applied to every subwindow, the pooling layers are applied 
to subwindows displaced relative to each others according to the stride. The 
dense layers are simply recorded according to their output dimension. The 
architecture has been e v aluated on combinations of ( m , l ) set to (32, 16), (8, 
8), (8, 4) and (8,2). 

Layer Stride Bias Padding 

conv-mp 3 ×3- m (1,2) No 0 
conv-mp 3 ×5-2 m (2,3) No 0 
conv-mp 3 ×5-4 m (2,3) No 1 Encoder 
conv-1 ×1-4 m (1,1) Yes 0 
dropout - 0.5 - - - 
dense - l - Yes - 
dense - 64 - Yes - Decoder 
dense - Output - Yes - 
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Note that L + and L may be seen as extremes. Using a Leaky- 
ReLU instead of simply taking the positi ve v alue enable us to choose 
something in between. To avoid the problems associated with (ii), 
L + loss is henceforth defined by replacing ( · ) + with a Leaky-ReLU 

with a coefficient of 0.01 in eq. ( 3 ). 
To reduce overfitting we applied � 2 weight penalization. In gen- 

eral, 

R( θ ) : = ρe 

∑ 

i 

‖ θ i 
e ‖ 2 2 + ρd 

∑ 

i 

‖ θ i 
d ‖ 2 2 , (5) 

where θ i 
e and θ i 

d are the weights associated with the i -th layer of 
the encoder and the decoder, respecti vel y, and ‖ · ‖ 2 is the � 2 norm, 
normalized according to the number of weights. For most of the 
models tested ρe = ρd = 10 −5 , but some experiments with higher 
weight penalization have also been carried out (see Section 4 ). 

2.3 Selection of training and test sets 

Finding an appropriate and limited set of scenarios on which to 
train an ML model is a challenge. The 27 985 scenarios selected 
(the subduction earthquake sources) have sources located a signifi- 
cant distance from the coast, meaning that coseismic displacements 
at the shoreline are negligible. 15 000 scenarios were reserved for 
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election of the training sets (basis set) while the remaining scenar-
os were used for testing. We cannot use the inundation maps from
he simulation for selecting the training set since we assume that we
nly have the offshore time-series calculations at the outset. How-
ver, it is instructive to examine the ranges of potential inundation
alculated by Gibbons et al . ( 2020 ) and the corresponding offshore
ave heights in order to understand the selection criteria that might

pply. Fig. 6 displays the percentage of scenarios in the PTHA that
nundate a given map pixel with a given flow depth. Great regions
f the map are inundated for either no scenarios or very few (e.g.
ignificantly below 1 per cent). Other regions (along the shoreline
nd the river) are inundated in almost every scenario. 

Fig. 7 displays relati ve histo grams for metrics of both the onshore
nundation (panels a and b) and the offshore time-series (panel c).
he two metrics for the onshore inundation are the total area of

nundation (i.e. the area that experiences a maximum flow depth
reater than zero) and the global MIH. Both distributions show
ong tails: many scenarios resulting in minimal inundation and great
nundation for very few scenarios. The of fshore histo grams (panel
) are exceptionally consistent from one offshore location to the
ext and have far less significant tails. 

To select suitable training sets, the 15 000 scenarios contained in
he basis set were binned according to the (square) maximum abso-
ute amplitude at the selected offshore locations. A fixed maximal
umber of scenarios were selected randomly from each bin for train-
ng (Fig. 8 a). This means that the proportion of scenarios selected
ises in each bin with increasing maximum amplitude, ensuring that
he largest scenarios are well-represented in each training set. The
esulting training sets, applied in this study are shown in Table 2 .
ig. 8 (b) displays the effect of this subselection procedure on the
istribution of the maximum flow depth, the maximum wave ampli-
ude and the inundated area for the training set t591 (see Table 2 ). 

 S Y S T E M A  T I C  E VA LU  A  T I O N  O F  A N  

L  I N U N DAT I O N  E M U L AT O R  

efore considering the impact of the size of training set, and model
arameters, we inspect some results for a single model. To this
nd we select the model with m = 8 and l = 8 trained on the
raining set t591, using the L + loss associated with the maximal
ow depth. Fig. 9 (a) displays the loss L + as a function of the weight
pdates on the training and test set, respecti vel y. The model was
rained using a batch size 10 and the Adam optimizer (Kingma
 Ba 2017 ) with (default) parameter settings η = 0.001 and β =

0.9, 0.999). The loss displayed in Fig. 9 (a) is the average over
he scenarios in each batch. The training procedure was stopped
fter 80 000 weight updates. While the loss stabilized after about
0 000 weight updates on the test set, the training loss continued to
ecrease for the training set. To mitigate overfitting, we select the
odel obtained after 40 000 weight updates. As seen in Fig. 9 (b),

he frequency of large inundations is higher in the training set than
he test set. Fur ther more, the � 2 -error with respect to the flow depth
i.e. ‖ ̂  f − f ‖ 2 ), scales approximatel y linearl y with the � 2 -norm of
he flow depth ( ‖ f ‖ 2 ). This explains why the loss is in general higher
n the training set. Fig. 9 (b) indicates that the model is subject to
 degree of overfitting (the � 2 -error is smaller for scenarios in the
raining set than for scenarios in the test set). This is particularly
lear for the scenarios with larger inundations. 

Fig. 10 displays the predicted flow depth (Prediction), the sim-
lated flow depth (Target) and the residual (Target-Prediction), for
 single scenario from the test set. The scenario is selected by ar-
anging all the cases according to increasing � 1 -error and picking
he scenario such that 99.9 per cent have a � 1 -error less than the
elected case. (In other words, this is one of the predictions with the
reatest error.) To best visualize how well the emulator-predicted
ow-depths match those calculated in the numerical simulations,
ig. 11 displays scatter plots, with one symbol per tsunami sce-
ario, for 12 selected locations in the Bay of Catania. A number of
he locations are along the shoreline, many with an essentially zero
le v ation. Others are located further inland with ele v ations ranging
rom 1 meter to several meters. A symbol above the line y = x in
ach of the panels represents a scenario for which the ML model
nderestimated the calculated inundation at that location and a sym-
ol below the line represents a scenario for which the ML model
verestimated the inundation. Each of the scatter plots in Fig. 11
s annotated with the corresponding Coefficient of Determination,
 

2 . The higher r 2 values for the scatter plots to the right of Fig. 11
ndicate that the model predictions better explain the target values
or the locations along the shoreline. For the near-shore locations
hat experience the greatest inundation (i.e. locations 10, 12, 20 and
4 in Fig. 11 ), we note that the accuracy of the predictions is better
or the smallest and greatest inundation scenarios than it is for those
cenarios between the extremes. The high accuracy associated with
igh flow depths may be explained by the high frequency of large
nundations in the training set. The high accuracy for very small
ow depths along the shoreline indicates that the model succeeds at
apping a zero signal to zero inundation. 
Fig. 12 displays the r 2 value at all locations on the inundation grid

sing a colour scale. The r 2 values in Fig. 12 (a) (the training set) are
ignificantly higher than the corresponding values in Fig. 12 (b). This
onfirms that the model is subject to a certain degree of overfitting.
ig. 12 (b) sho ws ho w the quality of the predictions ( r 2 ) diminishes
s we move away from the shoreline and the r 2 map is qualitati vel y
imilar to the inundation count map (Fig. 6 ). This tells us that the
uality of the prediction at a given pixel is likely directly related
o the number of scenarios resulting in inundation at that pixel. In
ig. 12 (c), we quantify the connection between the r 2 value for a
iven pixel for the test set and the number of inundations at that
ixel in the training data. For r 2 to exceed 0.8 at a given pixel,
 e should ha v e had ov er 100 scenarios in the training data that

howed inundation at that pixel. For r 2 to exceed 0.9, we should
ave inundation at that point for over 200 scenarios in the training
ata. 

The performance of simulated tsunamis relative to observations
s frequentl y e v aluated using Aida’s number (Aida 1978 ). Here we
se it to assess the accuracy of predictions versus simulations. Let
 i , S i be the predicted and the simulated flow-depth at locations 1
i ≤ N . Let K i = S i / P i . Aida measured the accuracy in terms of a

eometric mean ratio K given by 

log ( K ) = 

1 

N 

N ∑ 

i= 1 
log ( K i ) . (6) 

ote that K may be considered as a kind of correction factor. Its
tandard deviation 

log ( κ) = 

( 

1 

N 

N ∑ 

i= 1 

[
( log ( S i /P i ) ) 

2 − ( log ( K ) ) 2 
]) 1 / 2 

(7) 

s a measure of the fluctuation of this correction factor. 
To e v aluate the models accuracy for different flow depths, pixels

here classified according to simulated flow depths in the ranges [0,
.2), [0.2, 1), [1, 3) and [3, ∞ ), labelled class 1–4, respecti vel y. For



390 E. Briseid Storrøsten et al. 

Figure 6. The proportion of earthquake tsunami scenarios from the PTHA study of Gibbons et al . ( 2020 ) that exceed the indicated flow depth as a function 
of location in the Bay of Catania. A total of 32 363 scenarios resulted from the hazard disaggregation and so lilac-coloured regions for example are locations 
at which fewer than 323 scenarios in the data set exceed the indicated inundation. Panels (a), (b), (c) and (d) correspond to flow depths exceeding 0 m, 0.5 
m, 1 m and 4 m, respecti vel y. Note that this figure indicates the inundation from all of the scenarios in the PTHA. Only a subset of these scenarios (those 
corresponding to subduction earthquake scenarios) are exploited in the current study. 
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each scenario in the test set, Aida’s numbers K and κ were calculated 
for depth classes 2, 3 and 4, given that there were more than 100 
pixels in the given class. Due to the definition of K , only pixels 
where the predictions where nonzero are considered. Similarly, the 
mean residual and the 95 per cent quantile of the absolute value of 
the residual was calculated. The results are displayed in Fig. 13 . K 

is the geometric mean ratio of the relation between the simulated 
and the predicted flow depth. Consequently too high predictions are 
associated with K < 1 while too small predictions are associated 
with K > 1. While the model is in general unbiased, a slight tendency 
towards too high predictions for small flow depths, and too small 
predictions for large flow depths is visible both from Figs 13 (a) and 
(c). The fluctuation of the ratio between simulated and predicted 
flow depth (for each prediction) is measured by κ . Fig. 13 (d) shows 
that the ratio between predicted and simulated values is more spread 
out for the smaller flow depths. This is not surprising due to the 
increased sensitivity of the ratio K for smaller predicted flow depths. 
Note that small flow depths can be associated with the shoreline 
predictions for small inundations, or predictions further inland for 
larger inundations. Comparing with Figs 11 and 12 , these two cases 
behave quite dif ferentl y in terms of predicti v e accurac y, and perhaps 
also in terms of bias. Further comparison with Fig. 11 agrees well 
with the impression that the relative accuracy is higher for higher 
flow depths. Figs 13 (a) and (b) reveals that the absolute values 
of the residuals are in general higher for larger flow depths. The 
reduction in | K − 1 | with increasing flow depth indicates sublinear 
growth of the residual with respect to flow depth. Note that this does 
not conflict with the fact that the � 2 error increases approximately 
linearly with the � 2 -norm. This is because the large inundations 
have non-zero flow depths over a larger area. 
4  S E N S I T I V I T Y  O F  P E R F O R M A N C E  T O  

M O D E L  PA R A M E T E R S  A N D  T R A I N I N G  

S E T S  

Selecting model architecture, loss function, optimization procedure 
and training set is a challenging task. To this end, a range of different 
models have been fitted to the training sets described in Section 2.3 . 
Here, we examine how prediction accuracy varies with the size 
of the training set, the choice of loss function and the model ar- 
chitecture. Adjusting the size of m (the number of Kernels in the 
conv olutional lay ers) and l (the dimension of the latent space) is one 
way of adjusting the flexibility of the model. Another option is to 
adjust the loss function and the training procedure. We encode the 
model specifications into the coded model names with a core of the 
form mc8 l4 meaning 8 Kernels in the convolutional layers and 4 
parameters in the latent space ( cf . Table 1 ). Specifying in addition 
the training set employ ed ( cf . Tab le 2 ) leads to a model code of the
form t164 mc8 l4 . Applying a ReLU in the loss function ( cf . eq. 3 )
results in appending rel to the model code (i.e. t164 mc8 l4 rel ) 
and an increased weight penalization for the loss L + is denoted with 
an additional reg (for increased regularization). 

The adjustment of model parameters is not possible without some 
means of e v aluation. While single number statistics may help to 
compare different models, it is frequently insufficient in terms of 
model adjustment. A statistic like the mean � 2 -error over the test set 
reveals the average accuracy, but tells us little about the properties 
of the model. (This is especially due to the dependence of the error 
on the size of the inundation.) It can be much more illuminating to 
use a size-error scatter plot of the training and test sets. Size-error 
plots form the basis for the following discussion, while � 2 -error 
statistics for different models are available in Table 3 . 
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Figure 7. Histograms for (a) area in km 

2 inundated, (b) Maximum Inundation Height in m over all initially dry locations and (c) maximum height at the 
offshore locations 36, 37, 38 and 39 as labelled in Fig. 1 b). The basis for the plot is the same 32 363 scenarios from Gibbons et al . ( 2020 ) displayed in Fig. 6 
and all bars are scaled to display the percentage of the total number of scenarios. 

Figure 8. Selection of the training set t591. (a) Size of the 15 bins in the randomly chosen basis set and the number of randomly selected scenarios from each 
bin used in the training set. (b) Box plot of the maximum flow depth, the maximum wave amplitude at the offshore POIs and the size of the inundated area for 
the training set t591 and the randomly chosen basis set. 
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Fig. 14 compares the results of fitting the model with m = 8 and l
 8 (named mc8 l8 ) on dif ferentl y sized training sets and with the

oss functions L (MIH) and L + ( d max ). Both models, independent
f the loss function, perform far better on the training set than
n the test set for the smaller training sets (t164 and t295). An
mprovement is evident for training set t591, but only for t1831 is
here good overlap of the performance on the test and training sets.
long the dashed lines, the � 2 -error has the same size as the � 2 -norm.

art/ggae151_f7.eps
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Table 2. Selection of different training sets used in the paper. All scenar- 
ios are sorted by the maximum offshore wave amplitude squared prior to 
placement in bins. 

Label Max scenarios per bin Total scenarios 

t4196 1000 4196 
t1831 300 1831 
t591 70 591 
t295 30 295 
t164 15 164 
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We al wa ys want points to lie below this line ( � 2 -error < � 2 -norm) 
although the severity of the consequences of error increases with 
increasing � 2 -norm (along the x -axis). 

The cusp-shaped contour for model t164 mc8 l8 rel indicates 
that the model maps a certain subset of the scenarios to a rela- 
ti vel y small (almost) constant inundation map. This is confirmed 
by inspecting the pointwise predictions in scatter plots similar to 
the ones shown in Fig. 11 . This may be seen as a kind of degen- 
eracy of the model towards a mean prediction on a subset of the 
input. For a very small number of scenarios with low actual in- 
undation, the model t295 mc8 l8 rel predicts some erroneously 
large inundations. This is a consequence of overfitting and results 
from the model recognizing certain features associated with large 
inundation-scenarios in the training set, that are not physically as- 
sociated with large inundation. This is, in turn, the result of too 
flexible a model or an insufficient training set. Case-by-case in- 
spection of these erroneous predictions reveals some occurrences 
of non-physical patterns in the predicted inundation maps (for ex- 
ample with low flow depth along the shore and higher flow depths 
further inland). Careful analysis of spurious emulations should help 
us both to find robust methods for automatically detecting them 

and for improving the models so that they can be avoided. The 
models trained using the L loss tend to yield a nearly constant er- 
ror for scenarios below a certain size (seen as a flattening of the 
size-error plots in the top row of Fig. 14 ). The L -loss leaves the 
model with less flexibility due to the penalization of predictions 
below the topography ( cf . Section 2.2 ). This rigidity appears to 
make the model unable to fit the smaller scenarios. This hypothe- 
sis is supported by the fact that the ‘kink’ does not vanish using a 
larger training set. (If anything, the tendency is most pronounced 
for the largest training set, t1831.) Further inspection of the models 
trained using the L loss shows a tendency to predict small posi- 
ti ve v alues far from the shore, e ven for scenarios with relati vel y 
small inundation. This non-physical behaviour is explained by the 
penalization of predictions below the topography by the loss func- 
tion L . 

Fig. 15 displays size-error plots of the models mc8 l4 rel and 
mc8 l2 rel , with latent space dimensions of only 2 and 4, respec- 
ti vel y, trained on the training sets t164, t295 and t591. Reducing 
the dimension of the latent space is expected to enforce more reg- 
ularization. The clearly visible cusps appearing at slightly different 
locations for the training sets t164 and t295 reveals that the mod- 
els shows signs of de generac y as was also the case for the model 
t164 mc8 l8 rel in Fig. 14 . For the larger training set t591, no 
cusps are visible. Although this de generac y might only represent 
a local minima, it seems to be a feature associated with (very) 
low dimensional latent spaces. We note that the model mc8 l2 rel 
seems to perform well on the training set t591 compared with both 
mc8 l8 rel and in particular mc8 l4 rel . 

Fig. 16 displays size-error plots for a single set of l and m pa- 
rameters ( m = 32 and l = 16), trained on four different training 
sets (t164, t295, t591 and t1831) using the loss function L + with 
different degrees of weight regularization. For the smaller train- 
ing sets, especially t164, the tendenc y to ov erfit for the model 
mc32 l16 rel is greater than we have observed so far. The model 
t591 mc32 l16 rel also erroneously predicts large inundations 
for some scenarios with very low actual inundation. These models 
tend to fit the data faster. While 40 000 weight updates is early stop- 
ping for mc8 l8 rel , this is not the case for these models. Note that 
there is no sign of a ‘cusp’ in the plots for mc32 l16 rel (center 
row). Due to the larger parameter space, a second round of train- 
ing was carried out with an increased weight penalization for the 
loss L + and early stopping for the data sets t164 and t295 (middle 
row). To this end, ρe , and ρd were set to 0.05 and 0.01 respecti vel y, 
cf . eq. ( 5 ) on t591 and t1831, while ρe was set to 0.1 for t164 and 
t295. The model was labeled mc32 l16 rel reg and trained using 
60 000 weight updates for t591 and t1831, 20 000 weight updates 
for t295, and 10 000 weight updates for t164. On the data set t1831, 
the increased regularization does not have a big impact except the 
‘kink’ introduced for very small inundations. This may be due to 
the loss being dominated by the weight penalization term for small- 
inundation scenarios. Considering the data set t591, the increased 
weight penalization has led to more stable predictions, and a better 
overlap of the training and test sets. There are fewer large inunda- 
tion scenarios with relati vel y high error, and performance is better 
for the intermediate-inundation scenarios. Furthermore, there are 
no scenarios with low inundation that are erroneously ascribed high 
inundation. Ho wever , the general prediction quality for very small 
scenarios has been reduced. For the smaller training sets t295 and 
t164, there is a considerable improvement. It is most likely the early 
stopping that had the most regularizing effect. On t295, the regular- 
ized model appears to have a better fit than the t591 mc8 l8 rel 
visualized in Section 3 . For the data sets t164 and t295, a couple 
of further adjustments were done to increase regularization of the 
model (bottom row); a reduction in the model parameters was in- 
troduced by reducing the output dimension of the 1 ×1 CL to m 

= 32 ( cf . eq. 1 ). Fur ther more, the weight penalization was further 
increased to ρe = ρd = 10. The batch size was also increased 
to 30 and training was stopped at 20 000 weight updates. For this 
model the loss stabilized both on the training and the test set af- 
ter about 5000 weight updates. Fig. 16 shows that the training and 
test sets have good overlap. Fur ther more, predictions are relati vel y 
accurate also for very small scenarios, indicating that weight pe- 
nalization does not necessarily introduce a ‘kink’ as was observed 
for mc32 l16 rel reg on t591 and t1831. It should however be 
mentioned that the accuracy is in general reduced. Closer inspec- 
tion reveals that the overall reduced accuracy is associated with a 
bias towards underestimation. 

5  D I S C U S S I O N  A N D  C O N C LU S I O N S  

We have explored the capability of convolutional encoder–decoder 
based neural networks to predict high-resolution tsunami inundation 
maps based on simulated offshore time-series. The primary motiva- 
tions are for increased speed and reducing the computational cost. 
This is rele v ant for deep-sea tsunami simulation if large numbers 
of scenarios need to be simulated to explore the natural tsunami 
source variability. It is especially important for the very expensive 
numerical calculation of local inundation; the calculation of the 
offshore time-series is far cheaper. If we can simulate the offshore 
time-series, and then use an ML-based model to predict the final 
outcome, w e ma y process much larger parameter spaces for the 



ML emulation for inundation maps 393 

Figure 9. (a) The loss L + e v aluated on batches of size 10 on the training and test set during training of the model with m = 8 and l = 8. (b) Scatter plot of 
normalized � 2 -error against the normalized � 2 -norm of the flow depth for the trained model (40.000 weight updates) on the training and test set as indicated. 

Figure 10. (a) Target d max , f , (b) predicted d max , ˆ f and (c) residual ( f − ˆ f ) measured in meters for a given scenario in the test set. The scenario is selected 
by taking the 99.9 per cent quantile of the � 1 -error of the predictions on the test set. Panels (a) and (b) demonstrate the similarity of the simulated inundation 
map and that predicted by the emulator. The locations at which the emulator overestimates the inundations are coloured blue and the locations at which the 
emulator underestimates the modelled inundation are labelled red. 
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ame computational cost, reduce time-to-solution in urgent tsunami
omputations, and simulate massive ensembles more cheaply. A
sunami hazard analysis can require tens of thousands of numerical
imulations. A ML-based emulator will require a training set con-
aining a sufficient number of inputs and outputs, representative of
he range required. The cost of calculating the training examples,
nd the cost of training the model, should be significantly smaller
han the cost of computing the complete set of numerical simula-
ions. The model would be required to cope across the range of
nticipated impact and provide predictions with a satisfactory level
f accuracy. 
We have designed an encoder–decoder based model in which
he input time-series map to the output inundation maps via a la-
ent space with a far lower dimension than either inputs or outputs.

e have tested the performance of the model with respect to key
arameters m (the number of Kernels in the convolutional layers
f the encoder), l (the dimension of the latent space), the size and
onstitution of the training set and strategy for training the model.
f a single most important requirement were to be isolated, it would
e that every location at which inundation is to be estimated has
o have been inundated in an adequate number of scenarios in the
raining set. Assessing the accuracy of predictions as a function of
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Figure 11. Predicted versus simulated (target) flow-depth estimates for selected locations using the mc8 l8 rel model. Each scatterplot is linked to the 
location on the map at which the inundation w as e v aluated. All red symbols on the scatter plots relate to the training data and all blue symbols relate to the test 
data. Scatter plots to the right of the map correspond to locations very close to the coast, mostly with ele v ation close to zero. Scatter plots to the left of the map 
correspond to inland locations. The r 2 value provided on each scatter plot is limited to the test data. Note that location 9 is at a location with exceptionally high 
local ele v ation and that there are almost no scenarios at which the flow-depth here is above zero. 

Figure 12. Coefficient of determination, r 2 , for flow-depth predictions using model mc8 l8 rel at locations in the Bay of Catania for training scenarios (a) 
and test scenarios (b). Panel (c) is a heatmap of the 2-D histogram relating the number of scenarios in the training set that inundates (hit) a given pixel with the 
coefficient of determination r 2 evaluated on the test set. r 2 is a measure of prediction accuracy and panel (b) displays how the greatest uncertainty is found at 
the locations at high ele v ation, or far from the coastline, that are inundated only e xceptionally. P anel (c) shows that around 100 training scenarios need to have 
inundated a given location before r 2 consistently exceeds a value of 0.8. 
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Figure 13. Evaluation metrics for the model described in Section 3 . Box plots of mean residual flow depth (a), 95 per cent quantile of the absolute value of 
the residual (b), Aida’s numbers K (eq. 6 ) and κ (eq. 7 ) on the test set estimated for different flow depth classes. Classes 1–4 corresponding to depths [0, 0.2), 
[0.2, 1), [1, 3) and [3, ∞ ) m, respecti vel y. 

Tab le 3. Tab le of mean (mean l2) and 95 per cent-quantile (q95 l2) of the � 2 -error on the test set for different models 
presented in Section 4 . The models with X in the code, for example mc32X l16 rel reg also involve a reduction in 
the dimension of the output of the 1 ×1-convolutional layer. 

Model Variable t4196 t1831 t591 t295 t164 
mc32 l16 rel mean l2 0.0168 0.0235 0.0220 0.0268 0.0358 

q95 l2 0.0385 0.0526 0.0529 0.0700 0.0948 

mc32 l16 rel reg mean l2 0.0191 0.0243 0.0267 0.0267 
q95 l2 0.0452 0.0619 0.0671 0.0710 

mc8 l8 rel mean l2 0.0201 0.0214 0.0246 0.0285 0.0344 
q95 l2 0.0472 0.0480 0.0583 0.0668 0.0884 

mc8 l8 mean l2 0.0212 0.0246 0.0277 0.0299 0.0298 
q95 l2 0.0492 0.0514 0.0602 0.0684 0.0765 

mc8 l4 rel mean l2 0.0261 0.0305 0.0354 
q95 l2 0.0607 0.0724 0.0872 

mc8 l2 rel mean l2 0.0270 0.0319 0.0325 
q95 l2 0.0665 0.0720 0.0825 

mc32X l16 rel mean l2 0.0324 0.0316 0.0351 
q95 l2 0.0783 0.0771 0.0872 

mc32X l16 rel reg mean l2 0.0344 0.0358 
q95 l2 0.0831 0.0875 
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ocation indicates that models perform far better at locations close
o the shoreline (inundated for almost all scenarios with a wide
ange of inundation heights) than for locations further inland and at
igher ele v ations (inundated for only the more extreme scenarios).
n acceptable accuracy for prediction at a given location appears to

equire inundation from at least 100–200 scenarios in the training
et. That this will apply to as large a part of the domain as possible
equires training sets with the order of several hundred scenarios.
his suggests a major reduction in computational cost compared
ith the number of earthquake scenarios needed for the high reso-

ution PTHA at this specific site (Gibbons et al . 2020 ). Comparable
L based emulators like the ones presented in Makinoshima et al .

 2021), N ú ̃ nez et al . ( 2022 ) and Mulia et al . (2022 ) apply training
ets on the order of several thousand scenarios. 
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Figure 14. Scatter plots of the � 2 -norm (prediction size, horizontal axis) against the � 2 -error (prediction error, vertical axis) shown for the model mc8 l8 
and mc8 l8 rel trained on the training sets t164, t295, t591 and t1831. Each blue dot represents a single scenario in the test set, while each orange diamond 
represents a scenario from the training set. The models trained using the L + loss are labelled mc8 l8 rel due to the application of a ReLU in the loss function 
( cf . eq. 3 ). 

Figure 15. Scatter plots of the � 2 -norm (horizontal axis) against the � 2 -error (vertical axis) shown for the model mc8 l4 rel and mc8 l2 rel trained on the 
training sets t164, t295 and t591. Each blue dot represents a single scenario in the test set, while the orange diamonds represents scenarios from the training set. 
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Figure 16. Scatter plots of the � 2 -norm (horizontal axis) against the � 2 -error (vertical axis) shown for the model mc32 l16 rel (top row) trained on the 
training sets t164, t295, t591 and t1831. A second round of optimization, increasing the weight penalization by setting ρe = 0.05 and ρd = 0.01, cf . eq. ( 5 ) 
was carried out. The resulting models are labeled mc32 l16 rel reg (third ro w). The last ro w sho ws the result of further regularization ( ρe = ρd = 10) and 
reducing the parameters in the model by reducing the dimension of the output of the 1 ×1-convolutional layer to m = 32. The models with X in the code, 
for example mc32X l16 rel reg also involve a reduction in the dimension of the output of the 1 ×1-conv olutional lay er. Each b lue dot represents a single 
scenario in the test set, while the orange diamonds represents scenarios from the training set. 

 

t  

c  

t  

n  

t  

T  

s  

c  

t  

s  

a  

t  

l
 

i  

i  

t  

s  

t  

d  

t  

o  

b  

T  

o  

t  

a  

a
 

i  

t  

B  

f  

c  

t  

i  

d  

d  

a  

a  

w  

f  

p

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/1/382/7657823 by guest on 27 M

ay 2024
We acknowledge that the size of the training set is dependent on
he local topography, and the variability of the scenarios. A more
omplex morphology could potentially result in more complex in-
eractions between the incoming wave and the coast, and in turn
ecessitate a larger training set. In this paper, we restricted our at-
ention to the scenarios with distant subduction earthquake sources.
o apply the model to the full data set requires the inclusion of
cenarios with perhaps different wavelengths originated by smaller
rustal sources and/or significant coseismic displacement locally at
he inundated site (Volpe et al . 2019 ). To cope with scenarios with
ignificant local coseismic displacements, it will have to be included
s an input to the neural network. As such, we acknowledge the need
o extend the method to account for a wider set of sources, including
ocal coseismic displacements. 

Determining the scenarios to be selected for calculating the train-
ng set is challenging given that we will not know a priori how the
nundation maps will look for each simulation; we need to choose
hem on the basis of the offshore time-series. The more extreme
cenarios, likely to generate inundation at locations far inland need
o be disproportionately well represented in the training set in or-
er to provide adequate predictions for those locations only prone
o inundation for the low-probability, high-impact, tail of the set
f scenarios. In this paper, selection was carried out based on the
inning of scenarios by their maximum of fshore w ave amplitude.
his selection procedure could be improved by taking into account
ther types of variability. In applications, it is most likely difficult
o assess a priori the number of training samples necessary to reach
 required level of accuracy. A potential solution is to construct an
daptive selection procedure. 

In this study, the raw time-series output from the simulations
s provided as input to a convolutional neural network. 16 virtual
ide-gauge locations were selected (those locations surrounding the
ay of Catania), and the entire simulation time (4 hr) was used

or every scenario. These are rational choices to make but the
onsequences of these choices, and the sensitivity of the emula-
ions to the input specifications, will need to be examined. Us-
ng the full duration of the simulation time will mean that the
istance from the source is encoded implicitly in the input. Re-
ucing the duration of the time-series used (with the arri v al time
ccounted for), limiting the number of time-series exploited, and
ltering the treatment of the input data (for example by extracting
aveform features rather than raw waveforms) are all candidates

or comprehensive sensitivity studies, but beyond the scope of this
aper. 
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Ov erfitting is observ ed in numerous situations where the freedom 

in the model is too great and/or the training set too limited. We find 
it beneficial to minimize a loss function based upon the maximal 
flow-depth rather than the maximal inundation height. The latter 
requires a penalization of ne gativ e values that can result in artificial 
non-zero emulated inundation at locations that should remain dry. 
Choosing the dimension of the latent space is a nontrivial problem. 
Our investigations show that a too low dimensional latent space, 
may ‘disconnect’ the encoder and the decoder over a substantial 
subset of the input space, producing ‘degenerate behaviour’ and 
poor prediction. It is also associated with relati vel y slow and unsta- 
ble fitting of the model. Models with a slightly higher dimensional 
latent space and an increased number of kernels tend to fit the data 
faster and in a more consistent manner, but are more prone to over- 
fitting. Appl ying dropout, earl y stopping and weight penalization 
are ef fecti ve means to counteract overfitting. Increased weight pe- 
nalization appears to increase the stability of the models, but also 
introduces a bias in the predictions. 

In this paper, attention has been on the construction of reliable 
emulators suitable for relati vel y small training sets. As such, no 
weighting of the scenarios has been applied for training or e v alua- 
tion. In the perspective of risk analysis, it could make sense to tailor 
the fitting of the emulator to optimize the accuracy of the predicted 
risk. This may be done both by selection of the training set or by 
weighting of the selected scenarios in the loss function. We note 
that this is most important considering less flexible models trained 
on relati vel y small data sets. 
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