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A B S T R A C T   

Optimizing the cutter changing process for tunnel boring machines (TBMs) is crucial for minimizing maintenance 
costs and maximizing excavation efficiency. This paper introduces TunnRL-CC, a computational framework that 
utilizes reinforcement learning to autonomously determine cutter-changing strategies. TunnRL-CC’s realistic 
simulation models cutter wear under varying rock conditions, including hard rock and blockyness. A rein-
forcement learning agent is trained to learn optimal cutter-changing policies based on a reward function that 
balances cutter conditions and operational costs. The agent demonstrates innovative decision-making, adapting 
to changing excavation conditions. TunnRL-CC’s proposed methodology significantly differs from traditional 
cutter changing practices, which rely heavily on operator experience. Although TunnRL-CC has not been applied 
in practical projects, its theoretical basis and comprehensive computational experiments demonstrate its capa-
bility to significantly improve TBM cutter maintenance procedures.   

1. Motivation 

The efficient excavation of tunnels using tunnel boring machines 
(TBM) hinges on the optimal maintenance of its cutterhead, particularly 
replacing worn cutters. While cutter wear has been extensively studied 
[1–7], the process of changing worn cutters has received limited 
attention. Gehring (1995) [1] pioneered performance and wear forecasts 
in mechanized tunnel construction, employing empirical data and per-
formance analysis. Thuro (2002) [2] delved into the geological and rock 
mechanics fundamentals of rock breaking in tunnel construction, 
providing a theoretical framework for understanding cutter interaction 
with various rock types. Wang et al. (2012) [3] introduced the energy 
method to predict disc cutter wear, a novel approach that correlates the 
energy consumed during excavation with wear extent, offering a pre-
dictive model for hard rock TBMs. Hassanpour et al. (2014) [4] proposed 
an empirical model specifically for predicting TBM cutter wear in py-
roclastic and mafic igneous rocks, validated by a case history of the Karaj 
water conveyance tunnel in Iran. Plinninger et al. (2018) [5] identified 
rock mass-scale factors affecting tool wear in hard rock mechanized 
tunnelling, emphasizing the influence of geological conditions on wear 
rates. She et al. (2023) [6] developed a new method for wear estimation 
of TBM disc cutter based on energy analysis, enhancing the accuracy of 

wear prediction. Lastly, Zhang et al. (2023) [7] introduced a new index 
for cutter life evaluation and an ensemble model for predicting cutter 
wear, pushing forward the capabilities of data-driven wear assessment. 

Some recent studies present data-driven models that predict the wear 
state of individual cutters as a basis for decision-making for cutter 
changing [8,9]. The study of Farrokh et al. (2021) [10] presents one of 
the few exceptions that present actual data on the cutter change time 
and cutter consumption for hard rock TBMs and therefore is one of the 
few studies that investigates the cutter changing process itself as 
opposed to the cutter wear mechanisms. This study introduces a model 
for predicting cutter consumption but does not offer an adaptable 
approach for determining the optimal timing and process for cutter disc 
replacement, movement, and machine intervention, which are critical 
for efficient and autonomous maintenance. 

Conventional cutter changing practices often rely on operator 
experience, lacking a systematic and data-driven approach. This paper 
presents TunnRL-CC (Tunnel automation with Reinforcement Learning 
for cutter changing), a computational framework that enhances TBM 
cutter changing through reinforcement learning (RL) to autonomously 
identify optimal cutter-changing strategies. The authors made the first 
approach in this direction in a small-scale feasibility study [11]. The 
herein-presented computational framework is based on reinforcement 
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learning (RL), which was introduced to geotechnics by Erharter et al. 
(2021) [12], where the authors presented the first “TunnRL” setup. 
Slowly RL starts to attract attention in construction in general [13] and 
also in this field [14,15] although the development of RL in geotechnics 
is still in its infancy. The TunnRL-CC framework aims to be adaptable 
across various TBM construction sites without being restricted to spe-
cific site data, enhancing cutter-changing processes through a system-
atic, RL-based approach. 

TunnRL-CC’s realistic simulation models of cutter wear under 
varying rock conditions, including hard rock and blockyness, provide a 
comprehensive representation of TBM excavation dynamics. A rein-
forcement learning agent is trained to learn optimal cutter-changing 
policies based on a reward function that balances cutter conditions 
and operational costs. The agent’s ability to adapt to changing excava-
tion conditions and learn complex decision-making algorithms repre-
sents a departure from traditional cutter-changing practices. While 
TunnRL-CC has not yet been directly applied in practical projects, its 
algorithmic framework and extensive computational experiments 
demonstrate its potential to improve TBM cutter maintenance 
procedures. 

This research introduces an algorithmic framework for TBM cutter 
changing that utilizes Reinforcement Learning (RL) to directly optimize 
cutter-changing policies, diverging from traditional studies focused on 
cutter wear prediction. This method provides several advantages:  

• Autonomous decision-making: TunnRL-CC’s RL agent learns to make 
decisions without explicit instructions, adapting to changing exca-
vation conditions and complex interactions between cutter wear, 
TBM performance, and operational factors.  

• Balanced optimization: The reward function in TunnRL-CC balances 
the conflicting objectives of maximizing cutterhead lifespan and 
minimizing maintenance effort, ensuring a holistic approach to 
cutter maintenance.  

• Model-free learning: TunnRL-CC’s RL agent learns from experience, 
without requiring prior knowledge of the cutter wear or excavation 
dynamics. This allows for adaptation to real-world scenarios with 
varying rock conditions and TBM configurations.  

• Scalability: TunnRL-CC’s framework is designed to be scalable to 
different TBM types and tunnel lengths, making it applicable to a 
wide range of excavation projects. 

The proposed methodology represents a step forward in TBM cutter 
changing, paving the way for fully automated cutter maintenance sys-
tems. The extensive computational experiments presented in this paper 
demonstrate the effectiveness of the TunnRL-CC framework in opti-
mizing cutter-changing strategies and reducing maintenance costs. 
Although further real-world validation is needed, the study’s encour-
aging outcomes suggest the potential of RL to significantly improve TBM 
cutter maintenance practices. 

In section 2, we present current best practices for TBM cutter 
changing. Section 3 explains the TunnRL-CC computational framework 
for cutter-changing policy optimization, focusing on the geotechnical 
simulation of the cutter wear and excavation process. The main tech-
nical description of the RL agent optimization is given in Appendix A. 
The results and a discussion are presented in sections 4 and 5, and lastly, 
a conclusion will be drawn in section 6. The complete Python code of the 
TunnRL-CC framework is given in the Research Data section at the end 
of the paper. 

2. TBM cutter changing – Current best practice 

This section provides an overview of current best practices for cutter- 
changing policies in TBMs, including methodologies, decision-making 
criteria, and factors affecting cutter wear. Published literature about 
disc cutter changing is sparse (except for [10]), and the information 
given in this section is mostly based on the authors’ experience and 

direct reports from construction sites. 
Currently, cutter changing in TBM operations is performed manually 

during planned maintenance intervals, although there are developments 
to automate the physical cutter changing process [16,17]. During cutter 
changing, worn cutters are physically removed from the TBM’s cutter-
head and replaced with new or refurbished ones. Alternatively, less 
worn cutters may be relocated to areas on the cutterhead with higher 
wear. The specific procedures and frequency of cutter changing can vary 
depending on project requirements, machine specifications, operational 
constraints, local experience, and common habits. 

The decision to change cutters on a TBM is typically based on a 
combination of factors, including: i) Visual inspection: operators visu-
ally assess the wear and condition of the cutter discs by considering 
parameters such as cutter profile, degree of wear based on profilometers, 
or obvious defects such as flattened or split cutter rings; ii) Performance 
monitoring: Real-time monitoring systems track parameters such as 
thrust, torque, vibration, or energy consumption to detect changes that 
may indicate reduced cutter effectiveness. Automatic disc cutter wear 
monitoring is still under development [18]; iii) Maintenance schedules: 
Planned maintenance intervals or predefined criteria may dictate the 
frequency of cutter changing. 

Cutter wear in TBMs is influenced by various factors, including: i) 
Geological conditions during excavation significantly affect cutter wear 
rates due to variations in hardness and abrasiveness, ii) Cutter design 
and layout affect the wear due to the chosen cutter shape, cutter ma-
terial, positioning of cutters on the cutterhead and cutter spacing; iii) 
The way the TBM is operated influences cutter wear due to different 
factors such as the presence of water or slurry which may be causing 
adhesive conditions, cutter contact pressure and cutting speed as a result 
of the total TBM thrust and cutterhead rotations. 

Ongoing research aims to optimize these practices through data- 
driven and machine learning approaches [19], robotics techniques 
[16], correlations between cutter wear and other geotechnical param-
eters [20] and factors such as cutter wear patterns and optimization to 
harsh geological conditions [21]. Understanding the decision basis for 
cutter changing and the influences on cutter wear is crucial for 
improving TBM performance, reducing downtime, and enhancing the 
overall efficiency of tunnelling operations. 

3. TunnRL-CC setup 

Reinforcement learning (RL) is a machine learning paradigm where 
an agent learns optimal actions through trial and error by interacting 
with its environment, aiming to maximize cumulative rewards [22]. 

Fig. 1. Reinforcement learning principle contextualized for optimizing a cutter 
changing policy [11]. 
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This setup is visually depicted for our specific problem in Fig. 1. This 
approach has evolved from basic tabular methods to sophisticated deep 
learning algorithms capable of handling complex tasks, ranging from 
game playing to real-world applications in healthcare and telecommu-
nications [23–26]. RL algorithms are categorized into on-policy, 
learning directly from current actions, and off-policy, which learn 
from a different policy’s actions, enabling agents to improve without 
current policy execution. Our study utilizes advanced actor-critic algo-
rithms for on-policy learning, such as Proximal Policy Optimization 
(PPO) [27] and Advantage Actor Critic (A2C) [28], alongside off-policy 
methods like Deep Deterministic Policy Gradient (DDPG) [29], Twin 
Delayed DDPG (TD3) [30], and Soft Actor-Critic (SAC) [31] for 
continuous control tasks. These methods are chosen for their efficiency 
in learning and adaptability, featuring mechanisms like entropy addi-
tion for enhanced exploration and overestimation bias reduction for 
stability in training. 

At its core, TunnRL-CC consists of an RL setup with an environment 
that simulates the TBM excavation and the cutter wear and an RL agent 
that controls the cutter changing process. The framework can be run in 
three modes of operation:  

▪ Optimization: Due to the problem mentioned above that RL 
algorithms’ performance is highly sensitive towards their in-
ternal setup (i.e., algorithm’s architecture and hyper-
parameters) the first step is to choose one basic type of RL agent 
and optimize its architecture and hyperparameters for the given 
environment. The optimization process is done automatically, 
and more information is given in section 3.2, 4.1 and Appendix 
A. 

▪ Training: This mode enables training of one specific agent ar-
chitecture and set of hyperparameters that eventually have 
been found in the optimization step.  

▪ Execution: This mode enables loading a trained agent and 
subsequently running it through a specific number of episodes 
to analyze its performance and the methods of cutter changing 
applied. The episode records are then used to finalize the cutter 
changing policy. 

An overview of the TunnRL-CC framework is given in Fig. 2. 

3.1. Excavation and cutter changing simulation 

The environment simulates the cutter wear process throughout the 
TBM excavation and gives the agent both a state- and a reward signal. A 
list of all symbols is given in Table B.2. in Appendix B. 

The state (S) which the agent observes and uses as a base for its 

decisions represents the current life of each cutter. S is a vector of length 
nc tot, where nc tot is the total number of cutters of the cutterhead 
{
s0, s1,…snc tot

}
and each cutter can take values between 1 (new cutter) 

and 0 (broken/worn-off cutter). The normalized cutter life in the range 
of 0–1 is based on the theoretical durability of each cutter that is 
quantified as cl in “rolling meters per cutter” (e.g., a default cutter life cl 
of 40,000 m for each cutter is set based on experience and literature 
[32]). Due to the simulation of unique geological conditions in every 
episode (see below), the TBM will achieve a higher or lower penetration 
rate depending on the encountered geology and consequently the cutters 
wear down with respect to the geology: high TBM penetration (soft rock 
mass) → few cutterhead rotations per meter → low cutter wear; low TBM 
penetration (hard rock mass) → many cutterhead rotations per meter → 
high cutter wear. The default cutter life of 40,000 m for each cutter 
serves as an initial reference for this study but the actual cutter life can 
deviate significantly based on the influences given in section 2. Future 
versions of the TunnRL-CC framework will integrate more of them to 
offer a more precise prediction of cutter life under various conditions. 

After every stroke (also known as “TBM advance”), cl for each cutter 
is decreased based on the “travelled distance” of that cutter which is 
computed from the cutter’s position on the cutterhead, the length of the 
stroke (ls) and the penetration rate (p) of that stroke (see below for how p 
is simulated). A “stroke” refers to one advance length of the TBM cor-
responding to one full extension of the machines thrust cylinders (usu-
ally a distance between 1 and 2 m). Depending on the geological 
conditions, different numbers of cutterhead rotations can be required to 
completely excavate one stroke. In the simulation, inner cutters wear 
down slower than outer cutters, which are in good accordance with real 
TBM cutter wear [10,32,33]. A basic assumption in the simulation is that 
the agent can observe S after every stroke of the TBM, which aligns with 
current developments as stated in section 2. 

One episode in the simulation consists of a fixed number of ns strokes 
excavated by the TBM. Therefore, for every new episode, a new set of 
simulated TBM data is generated based on the model for TBM perfor-
mance prediction by Delisio et al. (2014) [34]. This TBM penetration 
model was chosen to simulate the excavation process as it is seen to be 
well suited to synthesize TBM data for hard rock TBM excavations and 
permits including special cutter failure events like failure due to 
“blockyness” in the simulation. In the simulation, the TBM penetration 
model is based on two sets of data that are being generated by random 
walks within boundaries:  

▪ a vector of length ns for the volumetric joint count (Jv) [joints / 
m3] and 

▪ a vector of length ns for the intact rock’s unconfined compres-
sive strength (UCS) [MPa] 

Fig. 2. Overview of the TunnRL-CC framework. Left: goal; middle: computational framework; right: result.  
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The field penetration index for blocky rock mass conditions (FPIblocky) 
[kN/m/mm/rot] is then computed with eq. 1 (i.e. eq. 9 in [34]). 

FPIblocky = e6*J− 0.82
v *UCS0.17 (1) 

To simulate the occurrence of hard to predict failures of individual 
cutters due to “blocky” rock mass conditions, between 1 and 4 cutters 
have a certain chance to fail in every stroke based on the FPIblocky. Table 1 
gives an overview of the failure likelihoods. The chosen ranges are 
directly based on the proposed ranges of blockyness of Delisio et al. 
(2014) [34] and the chances of cutters to fail were chosen so that a 
“sufficient amount of failures” will occur in the simulation. Adapting 
boundary conditions like this will also influence the policies that the 
agent learns and thus permit to train agents for specific site conditions. 
We assume a consistent 1/100 probability of cutter failure for both FPI 
ranges: <50 and 200–300. Despite differing physical states—disturbed 
and weak for FPI < 50, and blocky or intact for FPI 200–300—both 
ranges exhibit homogenous rock mass in their own way, leading to 
similar failure risks. 

The TBM’s thrust force (TF) [kN] can then be computed with eq. 2 
where D represents the TBM’s cutterhead diameter (based on eq. 13 in 
Delisio et al. (2014) [34]). 

TF = D*( − 523*ln(Jv)+2312 ) (2) 

An upper limit of 20 MN is set for TF as to avoid generation of un-
realistically large thrusts that would not be used in practice to avoid 
damaging the machine. Finally, the TBM’s penetration rate (p) [mm/ 
rot] can be computed with eq. 3 (based on eq. 7 in Delisio et al. (2014) 
[34] but note that as opposed to the original equation, the friction force 
is already included in the computed TF of eq. 2). 

p =
TF

D*FPIblocky
(3) 

In Fig. 3, an example is given for one episode of generated data, 
including cutter failures due to blocky rock mass behavior, as explained 
above. 

After every stroke, the agent receives a reward (r) and aims to 
maximize the total cumulative reward over the whole episode (R). 
Establishing an effective reward function is paramount as it significantly 
influences the behavior of the agent and permits conveying of domain 
knowledge, thereby ensuring the agent exhibits the desired behavior. 
Through extensive testing of the TunnRL-CC framework, the reward 
function of eq. 4 was developed which is based on four conditions that 
are being checked in sequential order and r will take the value of the first 
true condition. 

r =

⎧
⎪⎪⎨

⎪⎪⎩

− 1 if condition 1
0 if condition 2

eq.5 if condition 3
eq.6 if condition 4

(4) 

The four conditions are:  

▪ condition 1: if nc good < nc tot*t with nc good being the number of 
cutters with a life >0 and t being a manually set threshold to 
control the minimum required number of non-broken / worn- 

down cutters on the cutterhead (e.g. 85%, based on construc-
tion site experience).  

▪ condition 2: if a bearing failure has occurred on at least 1 cutter. 
A bearing failure of a cutter occurs when a cutter was broken 
due to blocky rock mass behavior but is not immediately 
changed in the subsequent strokes. If this would happen in re-
ality, the cutter’s bearing would fail and thus the whole cutter 
would require changing.  

▪ condition 3: if no cutter was acted on by the agent (i.e., no 
replacement or moving of cutters required – see next section), 
then r is computed with eq. 5.  

▪ condition 4: in all other cases, r is computed with eq. 6. 

r =
nc good

nc tot
(5)  

r =
ncgood

nctot

−
crw

cw
*α −

cmw

cw
*β −

dc

nctot

*γ − c*δ (6) 

The second term in eq. 6 (crw
cw

) is a penalty for replacing cutters where 
crw is the weighted sum of all replaced cutters in that stroke and cw is the 
weighted sum of all cutters. The weighting is done linearly by giving a 
higher penalty for replacing outer cutters than for replacing inner cut-
ters, thus representing the work effort associated with cutter replace-
ment. The term cmw

cw 
represents a penalty for moving cutters from one 

position to another on the cutterhead where cmw is again the weighted 
sum of all moved cutters of that stroke. dc

nctot 
is a penalty for acting on 

single cutters where dc represents the total distance between all cutters 
that are being acted on in that stroke expressed as their index difference 
(e.g., when cutters on positions 3, 12 and 18 are acted on, dc would be 
18–3 = 15). This aims to motivate the agent to change cutters in series 
instead of single cutters. c is the last penalty for having to enter the 
cutterhead in general and should help to motivate the agent to find 
efficient strategies. α (replacement), β (movement), γ (distance) and δ 
(enter) are weighting factors which help to control the influence of the 
four penalties onto r and must all add up to 1. These factors can be 
tailored to accommodate site-specific requirements. For instance, in a 
project where labor costs are high and/or material prices are low, 
prioritizing replacement over movement is recommended and vice 
versa. 

The reward system gives a r for every stroke in the range of − 1 to 1 
and thus an episode with 1000 strokes can have a minimum and 
maximum cumulative reward of − 1000 and 1000 respectively. Due to 
the many input parameters, a full visualization of the reward space is not 
possible, but Fig. 4 gives an overview of six different representative 
setups of the reward function for an exemplary environment with 41 
cutters (nc tot), a t of 0.85 (i.e. there must be at least 35 cutters with a 
cutter life >0), and α, β, γ and δ being set to 0.1, 0.65, 0.1 and 0.15 
respectively (values determined by trial and error with the goal to 
achieve a comprehensible agent behavior). 

The tunnel simulation environment and reward function were 
implemented by extending the open AI gym environment API [35]. 

3.2. Agent 

The agent has the task of observing the state of the cutters and, based 
on that, performing one of three actions for each cutter: i) do nothing, ii) 
replace the cutter with a new one, or iii) move the current cutter to a 
new position and replace the original position. Moving of cutters can 
only be done towards the center of the cutterhead as it is done on con-
struction sites where cutters are reused (Fig. 5). 

The implementation of these three possible actions per cutter leads to 
a large action space of shape nc tot*nc tot since for every cutter there must 
be nc tot possibilities to move to. The action space therefore is imple-
mented as a flattened nc tot by nc tot matrix (a vector of size nc tot * nc tot) 
of indices of cutters. If the ith cutter should be replaced then the matrix at 

Table 1 
Chances of 1–4 randomly selected cutters to fail within a stroke due to the 
occurrence of blocky rock mass conditions.  

Range of 
FPIblocky 

Rock mass structure designation acc. to 
Delisio et al. (2014) [35] 

Chance of cutters 
to fail 

> 300 massive 0 
300–200 blocky 1/100 
200–100 blocky/very blocky 1/50 
100–50 very blocky 1/10 
< 50 blocky/disturbed 1/100  
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position [i, i] must be set to 1 while the other indices remain 0. If the ith 

cutter is to be moved to position j, then then the matrix at position [i, j] 
must be set to 1 while the other indices remain 0. If a cutter is not to be 
replaced or moved, then all indices in the respective cutter’s row need to 
be set to 0. A graphical representation of an exemplary action with only 
five theoretical cutters for illustrational purposes is given in Fig. 6. 

Given this large action space and the requirement that the agent 
needs to be suited for multi-action-selection problems limits the choice 
of possible agent architectures. The following RL-agent types were 
selected for testing in the given environment: Advantage Actor Critic 
(A2C) [28], Deep Deterministic Policy Gradient (DDPG) [29], Proximal 
Policy Optimization (PPO) [27], Soft Actor Critic (SAC) [31] and Twin 
Delayed DDPG (TD3) [30]. The StableBaselines3 [36] implemented 
version of these algorithms was used as a base for subsequent, extensive 
architecture tuning and hyperparameter optimization with the Optuna 
framework [37]. The design of the experimentation framework was 
inspired by the architecture of the RL Baselines3 Zoo [36]. The problem 
that RL algorithms’ performance is highly dependent on the chosen 
agent architecture and hyperparameters is also underlined by this study. 
Only the extensive optimization of these algorithms made it possible to 
find setups that showed reasonable behavior. In-depth technical infor-
mation on the agents’ architecture, the training, and the parameter 
optimization can be found in Appendix A. 

4. Results 

4.1. Reached performance 

The decision-making agent for cutter disk maintenance is an RL 
model developed using extensive optimization of agent-architecture and 
a wide range of hyperparameters for each algorithm. To ensure the 
reliability of the agent’s decisions, we compared them against a manual 
process through expert domain reviews. The best-performing agents 
show reasonable, sometimes innovative, behavior and have learned a 
cutter-changing policy that could be utilized to automate the cutter- 
changing process in actual TBM excavations scenarios. 

In addition to tuning the hyperparameters of each algorithm, the 
network architecture of the multi-layer perceptron model (MLP) played 
a crucial role in the optimization process. Unlike in supervised learning 
setups where hyperparameter tuning typically leads to minor perfor-
mance increases, here, it made the difference between a model with low 
rewards and meaningless actions and models that approached the 
theoretical maximum reward value of 1000. The critical significance of 
hyperparameter tuning in RL has been well-documented in recent 
studies [38,39]. Modifying the network design from the default two- 
layer MLP with 64 nodes to an eight-layer network with 1024 nodes 
yielded the most significant improvements, particularly in the case of 

Fig. 3. 1 exemplary episode with 1000 strokes of generated data as the base for the reinforcement learning simulation. Row 1: volumetric joint count generated by a 
random walk with boundaries; Row 2: intact rock UCS generated by a random walk with boundaries; Row 3: computed FPIblocky; Row 4: computed TBM thrust force; 
Row 5: computed TBM penetration; Row 6: broken cutters per episode due to the occurrence of blocky rock mass behavior in individual strokes. 
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the TD3 algorithm. For detailed information on the parameters of the 
best-performing TD3 model, refer to Table B.1. in Appendix B. It outlines 
the key parameters that contributed to its performance. In Appendix A, 
we provide a comprehensive description of the hyperparameter opti-
mization process. 

The optimization of agents utilized the environment settings from 
Table 2, tailored for a standard TBM machine in an infrastructure tunnel. 
The framework, tested across various tunnel diameters and cutter 
numbers, is applicable to typical infrastructure TBM machines, accom-
modating a wide range of parameters. Parameters that represent actual 
values of TBM excavation were set based on the authors’ experience in 
tunnelling. The α, β, γ, δ weighting factors in the reward function (see eq. 
6), summing to 1.0, were determined through an iterative trial and error 
process. The aim was to balance the penalties associated with each 
factor, thereby achieving a confident learning process and an agent 
performance that closely mimics human behavior. Results are consid-
ered to be reasonable if they led to a stable learning process and a 
comprehensible agent performance, while unreasonable results led to 
erratic or inconsistent agent behavior, or a non-converging learning 
process. 

Table 3 summarizes the performance of the five RL algorithms 
employed in training the agents. Clear distinctions emerge, with off- 
policy algorithms, TD3 and DDPG, outperforming the on-policy coun-
terparts in terms of reward, training time, and practical performance 
metrics. Among them, TD3 exhibits the best performance, achieving a 
reward of 942 (theoretical max: 1000), which aligns with its superior 
results for other metrics. From a computational perspective, TD3 and 
A2C were the most efficient ones to train in the used framework and SAC 
was the least efficient (several magnitudes slower than TD3). Given the 
large number of required training episodes, the computational demand 
is crucial for successful training. A noticeable discrepancy arises be-
tween off-policy and on-policy algorithms when considering practical 
performance metrics. The TD3 agent demonstrates a lower average 

cutter replacement rate (0.028 per stroke) and focuses on relocating 
worn cutters to positions with lower wear in the center of the cutterhead 
(1.66), resulting in 1.35 broken cutters per stroke. The TD3 agent’s 
ability to manage various degrees of wear in cutters showcases its 
innovative behavior. Even though DDPG achieves the second highest 
performance in Table 3, much fewer DDPG trials achieved such a high 
reward compared to TD3. 

On the other hand, the on-policy A2C avoids broken cutters but uses 
more effort in both replacement (29.8) and movement (11.2) of cutters. 
These findings are considered while assessing the plausibility of de-
cisions and their practical utility in real-life scenarios. In today’s prac-
tice, the widespread replacement of cutters per stroke is not 
economically sustainable. Nonetheless, such results may hold signifi-
cance in settings where broken cutters are prohibited or in specific cases 
defined by contractual obligations, machine capabilities, or geological 
factors. 

Fig. 7 visualizes the learning paths of 515 runs using different pa-
rameters for the TD3 algorithm, showcasing the substantial variability in 
outcomes. Many parameter combinations lead to poorly performing 
models with negative or low rewards. Three main trajectories emerge: i) 
starting low and gradually reaching the maximum reward, ii) starting 
similarly but stabilizing to a local optimum around 120 due to conver-
gence to a suboptimal policy, and iii) exhibiting oscillations in the lower 
region. These trajectories emphasize the significance of parameter se-
lection in achieving optimal performance. 

Fig. 8 compares the performance of the different algorithms for the 
five best performing agents for each RL-algorithm. The reward devel-
opment depicts the learning path of the agents. It is worth noting the 
disparity in the number of training episodes required to achieve 
maximum performance. Notably, off-policy algorithms exhibit faster 
learning and reach higher levels of performance compared to on-policy 
algorithms. 

Fig. 9 provides further insights into the learning process of the best 
performing agent, specifically demonstrating how the learning process 
correlates with improved maintenance outcomes in terms of reduced 
broken cutters, replaced cutters, and moved cutters during the excava-
tion of a tunnel using a TBM equipped with 41 cutters per episode. The 
metrics show average values for a single episode consisting of 1000 
strokes, each spanning 1.8 m in length, during which a tunnel is exca-
vated. It is important to note that these metrics can vary significantly 
within the episode. From the summarized metrics presented in Table 3, 
we observe that the TD3 algorithm achieves a mean value of 1.35 broken 
cutters per stroke. Fig. 9 shows how the learning process of the TD3 
algorithm leads to fewer broken cutters, reduced replacements, and 
minimized movement of cutters during tunnel excavation. 

The learning process in the TD3 algorithm shows a pattern where 
maximum performance coincides with the lowest loss value for the actor 
around episode 1200. However, beyond this point, the performance 
becomes unstable and deteriorates. This pattern emphasizes the 
importance of selecting a trained agent at the appropriate episode to 
ensure optimal performance. The observed pattern of deteriorating 
performance and increasing or chaotic loss after reaching maximum 
reward is a common phenomenon in training neural networks, indi-
cating overfitting to outliers and fine-grained details in the training data. 
In TD3, the actor learns to select actions based on a policy that maxi-
mizes the expected cumulative reward, while the critic estimates the 
value that assesses the quality of different actions within a given state. 
Overfitting in RL refers to the actor becoming excessively specialized to 
the training environment, thereby struggling to generalize to new states 
or environments [22]. Increasing or unstable loss indicates a degrada-
tion in performance when encountering new, unseen states or environ-
ments. Like supervised learning, the training process aims to enhance 
the generalization capability of the trained agent, enabling it to perform 
well in unseen environments or states. 

Fig. 4. Exemplary values of the reward function for an environment with 41 
cutters. At least 35 functional cutters are required to achieve a reward > − 1 
(dashed line). Individual rewards are: 1) no replaced cutters, no moved cutters, 
no bearing failure; 2) 5 replaced cutters, no moved cutters, no bearing failure; 
3) no replaced cutters, 5 moved cutters, no bearing failure; 4) 10 replaced 
cutters, 10 moved cutters, no bearing failure; 5) 5 replaced cutters, 20 moved 
cutters, no bearing failure (see Fig. 10 for this reward in action); 6) no replaced 
cutters, no moved cutters, bearing failure. 
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4.2. Agent behavior at maximum performance 

When the best agent’s behavior is analyzed, the general environ-
mental- and especially the settings of the reward function must be 
considered (see section 3.1) since these are highly influential on how the 
agent’s final policy is. The parameters of Table 2 in combination with 
the optimized TD3 agent as described in the previous section led to the 
following behavior. Fig. 10 visualizes the decisions made by a trained 
TD3 agent in excavating 300 strokes of 1.8 m (540 m of sequential 
tunnel excavation) for one exemplary rock mass environment. 

The most obvious feature of the learned policy is that to the agent 
avoids entering the cutterhead excessively often. Typically, there are 
15–40 strokes between each maintenance effort. When the reward has 
lowered for several strokes, due to the wearing of cutters, the agent 

Fig. 5. For every cutter, the agent must choose between three actions: i) do not act on the cutter; ii) replace the cutter; iii) move the cutter to another position 
towards the center and replace the original position. The numbers besides the graphical representation of the state show the cutter life in the numerical range 
between 0 and 1. 

Fig. 6. Exemplary action with 5 cutters only. Cutters 1 and 5 are not acted on. 
Cutters 2 and 4 have been replaced and cutter 3 is being moved from position 3 
to position 5. 

Table 2 
Environment settings that were used for the optimization 
of the agents. A description of the parameters is given in 
section 3.1, and a summary of all symbols in the 
Appendix.  

Parameter Value 

D [m] 8 
nc tot [− ] 41 
cl [m] 40,000 
ns [− ] 1000 
ls [m] 1.8 
t 0.85 
α, β, γ, δ 0.1, 0.65, 0.1, 0.15  
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Table 3 
Summarized metrics for experiments of the top performing agents of each of the five algorithm types. Off = off-policy algorithm, on = on-policy algorithm.  

Algorithm Maximum Reward Episode num max reward Number of trials for the algorithm Avg. replaced cutters Avg. moved cutters Avg. broken cutters 

TD3 (off) 945 1264 515 0.028 1.66 1.348 
DDPG (off) 879 400 393 0.002 2.13 1.346 
A2C (on) 650 3448 324 29.8 11.2 0 
PPO (on) 637 5296 293 35.04 1.23 0.775 
SAC (on) 205 468 41 0.862 34.3 0.14  

Fig. 7. Learning paths for 515 trials of training a TD3 agent.  

Fig. 8. Best five performing agents for each of five algorithms, off-policy algorithms to the left and on-policy algorithms to the right (note the different x- and y-scales 
of the left and right figure). 
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Fig. 9. Exemplary training process for best performing agent, using the TD3 algorithm. Top row shows the reward development, middle row the development of 
maintain status indicators for TBM, lower describes development in algorithm loss value. 
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decides to act, perform maintenance (with a cost illustrated in the drop 
of the reward), thus making sure the cutterhead is in good shape and a 
high reward is re-established. All actions on cutters (i.e., replacing and 
moving of cutters) are bundled together and the agent tends to act on 
almost all cutters simultaneously. This is a strong improvement over the 
behavior of the agents in the preliminary study which were much more 
random in [11]. Another improvement over underperforming agents is 
that these sometimes focus on specific individual cutters only, while this 
behavior is not given in the best-performing TD3 agents. With the given 
set of environmental parameters, another behavior that can be observed 
is that the agent has learned to favor moving cutters instead of replacing 
them except for the centermost cutters which are rather replaced than 
moved. To a certain extent the agent accepts up to three simultaneous 
broken cutters for some strokes but hardly ever more than one single 
broken cutter on the cutterhead (visualized as black horizontal lines for 
cutter life in Fig. 10). A strange behavior that can be occasionally 
observed is that the agent sometimes acts in two consecutive strokes and 
performs multiple moves and replacements in both. 

Fig. 11 shows a visualization of different recordings for running a 
trained TD3 agent for a full exemplary episode, enriched with more 
metrics and alternative presentations than in Fig. 10. The above- 
described agent behavior is well visible. 

4.3. Overall cutter changing policy analyses 

To analyze the action space, 30,000 individual actions from 30 epi-
sodes where the best performing agent was executed were collected. The 
individual action-vectors have the size nc tot*nc tot, which in the case of 
the environment setup of Table 2 equals to 1681-dimensional action 
vectors. To analyze these high dimensional actions, the dimensionality 
reduction algorithm “t-distributed stochastic neighborhood embedding” 
(t-SNE) [40] was used to project the 30,000, 1681 dimensional actions 
down to a 2D map. The “Uniform Manifold Approximation and Projec-
tion for Dimension Reduction” (UMAP) [41] algorithm was also tested 
but produced very similar results as t-SNE and thus the t-SNE repre-
sentation of the data shall be shown here as it is the more widely used 
algorithm. The most influential parameter for the outcome of t-SNE is 

the “perplexity” which controls to which extent the algorithm balances 
the attention between the local and the global aspects of the data [42]. 
The best results – in terms of clearness of the structure of the t-SNE map – 
were found with a high perplexity of 1000 which is related to the large 
number of datapoints and also to the goal to find out more about the 
global relationship and patterns within the actions. 

t-SNE often produces representations of the data in the form of clear 
clusters in cases of inherently categorical data (e.g., Fig. 2 in van der 
Maaten and Hinton (2008) [40]) or “clouds” of datapoints with different 
densities when there is no clear grouping within the original data (e.g., 
extended data Fig. 1 in [43]). Multiple t-SNE embeddings of the 30 k 
actions show a recurring and consistent pattern, which can be described 
as two clusters that each have a pronounced linear geometry that in-
dicates an action space with a linear continuous topology (Fig. 12). 
Where the smaller cluster represents actions where cutters have been 
acted on, the larger cluster represents actions without any actual agent 
activity. Within the small cluster of actions that contain cutter changes 
and replacements, these actions represent a continuous transition from 
“low average cutter life → many cutter movings and replacements” to 
“high average cutter life → few cutter movings and replacements”. 
Different color coding in Fig. 12 b)-d) show this clearly and illustrate 
how the reward is high for actions that do not require any replacement 
of moving of cutters and lower for actions that do. 

5. Discussion 

The results of the previous section show that while reasonable per-
formance can be achieved, the learning process is unstable and sensitive 
to the chosen input parameters. The environment setting of Table 2 was 
chosen based on the authors’ experience. However, future studies are 
encouraged to investigate other parameters and especially weight 
combinations of α, β, γ, δ. The inherent instability in the learning process 
(which can be attributed to the exploration setup of the algorithm, 
necessary for discovering new policies) is the necessity to train multiple 
agents using the best parameters and subsequently select the best per-
forming one. Retraining an agent using optimized parameters does not 
guarantee good performance. In our experiments, it was common to 

Fig. 10. Decisions made by a trained TD3 agent excavating 300 strokes of 1.8 m (540 m sequential tunnel excavation). In every stroke (visualized by a vertical line) 
we see the status of the reward, the wearing of each of the 41 cutters, and an eventual action made on each of the cutters. Note the pattern of replacement of center 
cutters (lower numbers) and movement of outer cutters. 

T.F. Hansen et al.                                                                                                                                                                                                                               



Automation in Construction 165 (2024) 105505

11

observe that 9 out of 10 trials resulted in poorly performing agents, 
despite utilizing the best parameters. However, this situation is not 
necessarily problematic since some of the trials yield well-performing 
agents that can be saved and utilized for execution. 

By training multiple agents and selecting the best-performing one, 
we increase the likelihood of obtaining an agent that demonstrates 
satisfactory performance. This approach accounts for the instability and 
unpredictability inherent in the learning process and ultimately enables 
the identification of agents with high performance. 

It is observed that the highest-performing agents are bundling their 
cutter maintenance efforts together as far as possible. The reason for 
bundling of maintenance efforts is seen in the reward function’s (eq. 6) 
incentives to change cutters in series and the general penalty of entering 
the cutterhead (fourth and fifth term of eq. 6). 

The reason for the agents’ affinity towards moving cutters instead of 
replacing them is seen in the fact that the reward function raises an 
incentive for moving and the fact that moving a cutter also replaces the 
original position with a new cutter. Thus, the agent might perceive this 
as “cheaper” than just replacing the cutter. The observation that center 
cutters are replaced rather than moved can be interpreted with the 
setting of the reward function, which favors moving cutters from the 
outside to the inside of the cutterhead where the wear is lower. 

The observed behavior that agents sometimes act on two consecutive 
strokes is presumably related to the current setting for bearing failure 
(see reward function condition 2 in section 3.1) since this behavior can 
often be observed close to an occurred failure due to blocky rock mass 
behavior. As given in section 3.1, a failure of a cutter due to blockyness 

should be responded to with an immediate change of this cutter to avoid 
a bearing failure. Since cutter failure due to blockyness only affects 
single cutters, which would need immediate changing, this conflicts 
with the overall incentive not to change individual cutters and thus 
creates a hard-to-solve situation for the agent that would require a 
special behavior for single “exotic” events. 

6. Conclusions 

The study examined the use of reinforcement learning (RL) algo-
rithms to optimize cutter-changing policies in Tunnel Boring Machine 
(TBM) excavation, presenting a computational framework adaptable to 
various TBM operations. Extensive experimentation and analysis pro-
vided insights into the performance and effectiveness of different RL 
algorithms in this context. The findings highlight the importance of 
hyperparameter optimization in achieving successful RL models. Due to 
the low reproducibility of trained agents, a strategy involving training 
10–100 agents and selecting the best-performing agent was successfully 
employed. Notably, among the algorithms studied, the off-policy TD3 
model showed high performance, achieving substantial rewards and 
plausible actions. 

The trained agent adopted a cutter maintenance approach around 
every 20 strokes, prioritizing the relocation of worn cutters to areas with 
less wear on the cutterhead rather than immediately replacing them. 
This strategy resulted in an average of 1.35 broken cutters per stroke, 
considering a TBM equipped with 41 cutters. Note that the simulated 
rockmass can be seen as “extremely abrasive” due to these numbers, but 

Fig. 11. Visualization of the recordings of one exemplary episode. The top row shows the cutters’ life with a color coding acc. to cutter positions. The second and 
third rows show the number of moved and replaced cutters (with a vertical line at a certain stroke) respectively and the histograms to the right show the number of 
moves / replacements per cutter position. The fourth row shows the received reward per stroke and the total cumulative reward of the episode to the right. 
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Fig. 12. t-SNE dimensionality reduction of 30 k actions of the best-performing agent. a) color coding acc. to average cutter life of the state that corresponds to the 
action; b) reward received after the action; c) number of replaced cutters as a result of the action; d) number of moved cutters as a result of the action. 
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the simulation can also be adjusted to account for less abrasive rockmass 
conditions. Changing the size of the cutterhead / the number of cutters is 
possible, but it must be considered that an increasing number of cutters 
results in an exponentially growing action space (see section 3.2) and 
thus vastly increasing computational demand and complexity of the 
problem for the agent to solve. The reward function’s weightings can be 
adjusted to adapt the policy to specific site conditions by creating higher 
incentives for e.g. moving cutters instead of replacing them with the 
weighting factors α, β, γ and δ (see section 3.1). The development and 
implementation of an RL-based recommender system for cutter- 
changing policies in TBMs offer benefits for various stakeholders, 
including: i) TBM site operators: The use of RL algorithms, such as the 
high-performing TD3 model, can optimize cutter-changing decisions, 
resulting in enhanced TBM performance, increased productivity, and 
reduced downtime. Operators can benefit from improved maintenance 
strategies, cost savings, and more efficient tunnel excavation processes 
leading to better resource allocation, improved maintenance scheduling, 
and reduced manual inspection effort. ii) Project owners and contrac-
tors: Optimized cutter changing policies, driven by RL algorithms, can 
contribute to project cost reductions, improved project timelines, and 
increased overall project efficiency. This benefits project owners and 
contractors by ensuring smoother operations and successful project 
completion. 

A practical implementation of the RL-based recommender system for 
cutter changing policies for TBM tunnelling could involve the following 
components: i) Real-time data collection: Sensors and monitoring sys-
tems installed in the TBM gather data on various parameters such as 
cutter wear, bearing condition, thrust, torque, vibration, and energy 
consumption. ii) Data processing and analysis: The collected data is 
processed and fed as state information to the RL-based recommender 
system, such as a trained TD3 agent, which evaluates the current cutter 
status and recommends appropriate cutter changing actions before the 
next stroke. iii) Decision support interface: The system provides rec-
ommendations to TBM operators or maintenance crews through an 
intuitive user interface, assisting them in making well-informed de-
cisions regarding cutter changing. iv) Continuous learning and 
improvement: Leveraging human feedback on the agents’ decisions can 
be used to update the agent, and further enhance its recommendations 
over time. 

7. Outlook 

While the TunnRL-CC framework can be used as a support for 
decision-making in real tunnelling today, there are several points that 
still can be improved in future studies:  

i) The reward function contains penalties for excessive work effort 
for cutter maintenance which is simply based on the cutters’ 
position on the cutterhead (i.e., outer cutters need more effort 
than inner cutters). The subsequent advancement entails incor-
porating a sophisticated model that considers the intricate ge-
ometry of the cutterhead, including its inner layout featuring 
multiple bucket chambers. By integrating this enhanced model, 
the system can incentivize the replacement of cutters within a 
single bucket chamber while penalizing the effort involved in 
moving cutters between chambers. (i.e., include a shortest path 
problem).  

ii) The current penetration model after Delisio et al. (2014) [34] is 
seen as well suited to simulate geological conditions for hard rock 
excavation in blocky rock mass conditions. Different penetration 
models could be considered and/or established to get represen-
tative simulations in other geological conditions.  

iii) The reward function controls the agent’s behavior and is the lever 
that allows adjustment of the learned policy towards construction 
site specific geological, logistical and economic conditions. 
Further investigations about the extent to which the reward 

function’s parameters α, β, γ and δ control the learned policy 
should be conducted in order to achieve site specific tailored 
policies.  

iv) The current study has done extensive optimization of advanced 
RL models to find an effective setup for the given environment. 
However, optimizing RL agents is challenging due to the low 
repeatability of single model runs and the resulting uniqueness of 
the optimized agents and thus optimization schemes that work 
for supervised learning are only of limited help for RL. Further 
investigations about efficient large-scale parametric studies and 
optimizations of RL algorithms are therefore required.  

v) The presented study shows a simulation-driven approach towards 
agent-based optimization of TBM cutter changing. Simulations 
were necessary to ensure the computational feasibility of the RL 
approach but a theoretical proof of concept is given. Including 
real world data from construction sites is the necessary next step 
to validate the learned policies and demonstrate that this 
approach also works under operational conditions. 

Moving forward, refining TunnRL-CC with real-world data and 
tailored optimization will be essential for practical application. The 
presented cutter changing policy optimization systems TunnRL-CC fits 
well into recent developments in TBM tunnelling and can be the missing 
link between automated cutter state monitoring [18] and robotic 
replacement of cutters in the cutterhead [16]. These enhancements will 
solidify the role of RL in advancing TBM maintenance and set a prag-
matic course towards smarter and more efficient tunnelling operations. 

Research data 

The full TunnRL-CC software can be found as a locked release version 
with Python code under the following Github repository: https://github. 
com/TunnRL/TunnRL_TBM_maintenance/releases/tag/v2.0.0 
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Appendix A. Extended technical description of parameter optimization for different agents 

Hyperparameter optimization plays a crucial role in training RL agents, as acknowledged in prior research [38,39]. Taking inspiration from the 
experimental setup for hyperparameter orchestration and following the guidelines provided in RL baselines3 Zoo [36], we established a hyper-
parameter tuning framework based on Optuna [37]. This framework incorporated the latest practices, including defining reasonable intervals for 
hyperparameters and tailoring specific configurations for each algorithm under investigation. Additionally, we developed specialized functions to 
ensure scalability in network design and learning rates, catering to the unique requirements of the task at hand. 

In our experiments, we evaluated the performance of the trained agent at regular intervals, typically every 50–100 episodes (varying for different 
algorithms). To assess performance, we loaded the best performing agents obtained up until that point and executed their decisions in the environment 
for the last 10 episodes. Subsequently, we calculated the mean performance as an indicator of the agent’s effectiveness. This process allowed us to 
monitor the agent’s progress over time and make informed decisions regarding parameter optimization. 

The parallel coordinate plots in Figs. A.1-A.4 provide insights into the sensitivity of various hyperparameters to the final reward. It is evident that 
TD3 demonstrates robustness in handling a wide range of values for most parameters. In contrast, the other algorithms exhibit optimal results within 
narrower ranges of parameter values. Despite its generality, TD3 has some parameters crucial for performance that we want to point out:  

▪ The use of more complex networks with additional layers and significantly more nodes compared to the default setup.  
▪ A longer policy delay update period, above 5 steps (default is 2). This addresses a problem in DDPG, which TD3 builds upon.  
▪ Learning starts after around 300 steps (default is 100). In this first period the agent samples valid actions from a random uniform distribution. 

More steps enhance its exploratory capabilities.  
▪ The absence of noise injection regulates the exploratory capabilities of the agent. 

In the case of the best on-policy model, PPO, a distinct band of best performing parameters can be observed. Compared to TD3, the core network 
architecture for PPO is notably smaller. A characteristic of models that are less dependent on hyperparameters was the lower degree of reproducibility 
when using the best performing parameters. For example, running TD3 ten times with these parameters resulted in a well-performing model, 
achieving a reward above 900, only once out of ten attempts. On the other hand, a comparable run using PPO consistently yielded high rewards, over 
600, in all ten repeated runs. This suggests that PPO exhibits greater stability and reproducibility when utilizing the best performing parameters 
compared to TD3, still TD3 performs notably better when it is successful. 

During the experiments, it was observed that several trials reached a dead-end trajectory with a local optimum, even when using the exact same 
parameters as earlier successful runs. Running into local optima is a well-known problem of DDPG and TD3 [44] and was particularly noticeable in the 
plots of experiment trials of these algorithms, as depicted in Fig. A-5. This phenomenon, along with the necessity of conducting numerous hyper-
parameter experiments, posed challenges in effectively managing computational resources for numerous experiments necessary. To address this issue, 
we implemented functionality for parallel runs of Optuna trials using the Joblib library [45]. This allowed multiple trials to be executed concurrently, 
utilizing different computer nodes. To facilitate reproducibility and streamline the experimentation process on High-Performance Computing (HPC) 
machines, we containerized the training code using Docker containers. By containerizing the code, we ensured consistent execution environments and 
simplified the deployment of the training process. 

To simplify parameter configuration and ensure effective management of parameters across different experiments, we leveraged the Hydra 
framework [46]. Hydra allowed us to easily configure and keep track of parameters in various experimental setups. Additionally, we employed 
MLflow [47] to track metrics for each experiment, enabling us to compare the performance of different runs systematically. 

During the execution of each experiment, which could span several hours, we utilized Tensorboard to monitor the development of metrics. This 
real-time evaluation facilitated the early termination of certain experiments when deemed necessary. To enhance the training process and gain deeper 
insights, we implemented a range of callbacks. These callbacks interacted with the agent during training, captured the state of the environment, and 
logged and visualized the training process. By incorporating these callbacks, we were able to gain a comprehensive understanding of the agent’s 
progress and performance throughout the training process.

Fig. A.1. Parallel coordinate plot that shows parameter combinations during the optimization of the TD3 algorithm.   
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Fig. A.2. Parallel coordinate plot that shows parameter combinations during the optimization of the DDPG algorithm.  

Fig. A.3. Parallel coordinate plot that shows parameter combinations during the optimization of the A2C algorithm.  

Fig. A.4. Parallel coordinate plot that shows parameter combinations during the optimization of the PPO algorithm. 
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Fig. A.5. Optimization process visualized in trial number versus reward for the same algorithms.  

Appendix B. Tables with additional information  

Table B1 
Optimized hyperparameters for best performing TD3-agent.  

Parameter Value 

Action noise None 
Activation function tanh 
Batch size 200 
Gamma 0.9766519262714228 
Gradient steps 8 
Learning rate 8.86666407593999e-05 
Learning starts 600 
Lr schedule Linear decrease 
Number of nodes in layer 1024 
Number of layers 8 
Policy delay 10 
Target noise clip 0.42580299347844197 
Target policy noise 0.09564547952520154 
Tau 0.0028384818651399457  
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Table B2 
Overview table of all used symbols.  

Symbol Unit Explanation 

S – State vector 
nc tot – Total number of cutters on the cutterhead 
cl [m] Cutter life expressed as the total rolling distance of one cutter 
ls [m] Length of one stroke of the TBM 
p [mm/rot] Penetration rate of the TBM 
ns – Number of strokes in one episode 
Jv [joints / m3] Vector of length ns with values for the volumetric joint count 
UCS [MPa] Vector of length ns with values for the intact rock unconfined compressive strength 
FPIblocky [kN/m/mm/rot] Field penetration index for blocky rock mass conditions acc. to [34] 
TF [kN] Thrust force of the TBM 
D [m] Diameter of the TBM cutterhead 
r – Reward that the agent receives after every stroke 
R – Cumulative reward of one whole episode 
nc good – For reward: number of cutters with a cl > 0 
t [%] For reward: threshold of minimum required number of cutters with a cl > 0 
cw – For reward: linearly weighted sum of all cutters where outer cutters have a higher weight than inner cutters 
crw – For reward: linearly weighted sum of all replaced cutters where outer cutters have a higher weight than inner cutters 
cmw – For reward: linearly weighted sum of all moved cutters where outer cutters have a higher weight than inner cutters 
dc – For reward: total distance between all cutters that have been acted on expressed as index difference 
c – For reward: penalty for effort of having to enter the cutterhead 
α, β, γ, δ – For reward: weighting factors to adjust penalties to different construction economic conditions.  

References 

[1] K. Gehring, Leistungs- und Verschleißprognosen im maschinellen Tunnelbau, 
Felsbau (1995) 439–448. 

[2] K. Thuro, Geologisch-felsmechanische Grundlagen der Gebirgslösung im 
Tunnelbau: Habilitationsschrift, in: Münchner Geologische Hefte, Reihe B, 2002, 
pp. 1–160. 

[3] L. Wang, Y. Kang, Z. Cai, Q. Zhang, Y. Zhao, H. Zhao, P. Su, The energy method to 
predict disc cutter wear extent for hard rock TBMs, Tunn. Undergr. Space Technol. 
28 (2012) 183–191, https://doi.org/10.1016/j.tust.2011.11.001. 

[4] J. Hassanpour, J. Rostami, S. Tarigh Azali, J. Zhao, Introduction of an empirical 
TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case 
history of Karaj water conveyance tunnel, Iran, Tunn. Undergr. Space Technol. 43 
(2014) 222–231, https://doi.org/10.1016/j.tust.2014.05.007. 

[5] R.J. Plinninger, M. Alber, J. Düllmann, Rock mass-scale factors with an influence 
on tool wear in the mechanised tunnelling process in hard rock, Geomechanik und 
Tunnelbau 11 (2018) 157–168, https://doi.org/10.1002/geot.201700068. 

[6] L. She, S. Zhang, C. Wang, Y. Li, M. Du, A new method for wear estimation of TBM 
disc cutter based on energy analysis, Tunn. Undergr. Space Technol. 131 (2023) 
104840, https://doi.org/10.1016/j.tust.2022.104840. 

[7] N. Zhang, S.-L. Shen, A. Zhou, A new index for cutter life evaluation and ensemble 
model for prediction of cutter wear, Tunn. Undergr. Space Technol. 131 (2023) 
104830, https://doi.org/10.1016/j.tust.2022.104830. 

[8] Y. Liu, S. Huang, G. Di Wang, D. Zhang Zhu, Prediction model of tunnel boring 
machine disc cutter replacement using kernel support vector machine, Appl. Sci. 12 
(2022) 2267, https://doi.org/10.3390/app12052267. 

[9] X. Shen, X. Chen, Y. Fu, C. Cao, D. Yuan, X. Li, Y. Xiao, Prediction and analysis of 
slurry shield TBM disc cutter wear and its application in cutter change time, Wear 
498-499 (2022) 204314, https://doi.org/10.1016/j.wear.2022.204314. 

[10] E. Farrokh, Cutter change time and cutter consumption for rock TBMs, Tunn. 
Undergr. Space Technol. 114 (2021) 104000, https://doi.org/10.1016/j. 
tust.2021.104000. 

[11] G.H. Erharter, T.F. Hansen, Towards optimized TBM cutter changing policies with 
reinforcement learning, Geomechanics and Tunnelling 15 (2022) 665–670, 
https://doi.org/10.1002/geot.202200032. 

[12] G.H. Erharter, T.F. Hansen, Z. Liu, T. Marcher, Reinforcement learning based 
process optimization and strategy development in conventional tunneling, Autom. 
Constr. 127 (2021), https://doi.org/10.1016/j.autcon.2021.103701. 

[13] N.S. Kedir, S. Somi, A.R. Fayek, P.H. Nguyen, Hybridization of reinforcement 
learning and agent-based modeling to optimize construction planning and 
scheduling, Autom. Constr. 142 (2022) 104498, https://doi.org/10.1016/j. 
autcon.2022.104498. 

[14] A. Biniyaz, B. Azmoon, Z. Liu, Intelligent control of groundwater in slopes with 
deep reinforcement learning, Sensors (Basel) 22 (2022), https://doi.org/10.3390/ 
s22218503. 

[15] E. Soranzo, C. Guardiani, W. Wu, The application of reinforcement learning to 
NATM tunnel design, Underground Space (2022), https://doi.org/10.1016/j. 
undsp.2022.01.005. 

[16] L. Du, J. Yuan, S. Bao, R. Guan, W. Wan, Robotic replacement for disc cutters in 
tunnel boring machines, Autom. Constr. 140 (2022) 104369, https://doi.org/ 
10.1016/j.autcon.2022.104369. 

[17] J. Yuan, R. Guan, J. Du, Design and implementation of disc cutter changing robot 
for tunnel boring machine (TBM), in: 2019 IEEE International Conference on 
Robotics and Biomimetics (ROBIO), 2019, pp. 2402–2407. doi:https://doi.org/10 
.1109/ROBIO49542.2019.8961494. 

[18] H. Lan, Y. Xia, Z. Ji, J. Fu, B. Miao, Online monitoring device of disc cutter wear – 
design and field test, Tunn. Undergr. Space Technol. 89 (2019) 284–294, https:// 
doi.org/10.1016/j.tust.2019.04.010. 

[19] A. Mahmoodzadeh, M. Mohammadi, H. Hashim Ibrahim, S. Nariman Abdulhamid, 
H. Farid Hama Ali, A. Mohammed Hasan, M. Khishe, H. Mahmud, Machine 
learning forecasting models of disc cutters life of tunnel boring machine, Autom. 
Constr. 128 (2021) 103779, https://doi.org/10.1016/j.autcon.2021.103779. 

[20] M.-H. Rajati, J. Rostami, H. Memarian, M.-T. Hamzaban, A study on predicting the 
wear of TBM disc cutters using Cerchar testing, Tunn. Undergr. Space Technol. 140 
(2023) 105290, https://doi.org/10.1016/j.tust.2023.105290. 
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