
Automation in Construction 165 (2024) 105505

0926-5805/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Towards reinforcement learning - driven TBM cutter changing policies

Tom F. Hansen a,b,1,*, Georg H. Erharter b,c,1,*, Thomas Marcher c

a University of Oslo, Informatics Institute, Blindern, 0316 Oslo, Norway
b Norwegian Geotechnical Institute, Sandakerveien 140, 0484 Oslo, Norway
c Graz University of Technology – Institute for Rock Mechanics and Tunnelling, Rechbauerstraße 12, 8010 Graz, Austria

A R T I C L E I N F O

Keywords:
Tunnel boring machine
Cutter wear
Reinforcement learning
Predictive maintenance

A B S T R A C T

Optimizing the cutter changing process for tunnel boring machines (TBMs) is crucial for minimizing maintenance
costs and maximizing excavation efficiency. This paper introduces TunnRL-CC, a computational framework that
utilizes reinforcement learning to autonomously determine cutter-changing strategies. TunnRL-CC’s realistic
simulation models cutter wear under varying rock conditions, including hard rock and blockyness. A rein-
forcement learning agent is trained to learn optimal cutter-changing policies based on a reward function that
balances cutter conditions and operational costs. The agent demonstrates innovative decision-making, adapting
to changing excavation conditions. TunnRL-CC’s proposed methodology significantly differs from traditional
cutter changing practices, which rely heavily on operator experience. Although TunnRL-CC has not been applied
in practical projects, its theoretical basis and comprehensive computational experiments demonstrate its capa-
bility to significantly improve TBM cutter maintenance procedures.

1. Motivation

The efficient excavation of tunnels using tunnel boring machines
(TBM) hinges on the optimal maintenance of its cutterhead, particularly
replacing worn cutters. While cutter wear has been extensively studied
[1–7], the process of changing worn cutters has received limited
attention. Gehring (1995) [1] pioneered performance and wear forecasts
in mechanized tunnel construction, employing empirical data and per-
formance analysis. Thuro (2002) [2] delved into the geological and rock
mechanics fundamentals of rock breaking in tunnel construction,
providing a theoretical framework for understanding cutter interaction
with various rock types. Wang et al. (2012) [3] introduced the energy
method to predict disc cutter wear, a novel approach that correlates the
energy consumed during excavation with wear extent, offering a pre-
dictive model for hard rock TBMs. Hassanpour et al. (2014) [4] proposed
an empirical model specifically for predicting TBM cutter wear in py-
roclastic and mafic igneous rocks, validated by a case history of the Karaj
water conveyance tunnel in Iran. Plinninger et al. (2018) [5] identified
rock mass-scale factors affecting tool wear in hard rock mechanized
tunnelling, emphasizing the influence of geological conditions on wear
rates. She et al. (2023) [6] developed a new method for wear estimation
of TBM disc cutter based on energy analysis, enhancing the accuracy of

wear prediction. Lastly, Zhang et al. (2023) [7] introduced a new index
for cutter life evaluation and an ensemble model for predicting cutter
wear, pushing forward the capabilities of data-driven wear assessment.

Some recent studies present data-driven models that predict the wear
state of individual cutters as a basis for decision-making for cutter
changing [8,9]. The study of Farrokh et al. (2021) [10] presents one of
the few exceptions that present actual data on the cutter change time
and cutter consumption for hard rock TBMs and therefore is one of the
few studies that investigates the cutter changing process itself as
opposed to the cutter wear mechanisms. This study introduces a model
for predicting cutter consumption but does not offer an adaptable
approach for determining the optimal timing and process for cutter disc
replacement, movement, and machine intervention, which are critical
for efficient and autonomous maintenance.

Conventional cutter changing practices often rely on operator
experience, lacking a systematic and data-driven approach. This paper
presents TunnRL-CC (Tunnel automation with Reinforcement Learning
for cutter changing), a computational framework that enhances TBM
cutter changing through reinforcement learning (RL) to autonomously
identify optimal cutter-changing strategies. The authors made the first
approach in this direction in a small-scale feasibility study [11]. The
herein-presented computational framework is based on reinforcement

* Corresponding author.
E-mail address: tom.frode.hansen@ngi.no (T.F. Hansen).

1 These authors contributed equally to this work.

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2024.105505
Received 28 July 2023; Received in revised form 12 March 2024; Accepted 31 May 2024

mailto:tom.frode.hansen@ngi.no
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2024.105505
https://doi.org/10.1016/j.autcon.2024.105505
https://doi.org/10.1016/j.autcon.2024.105505
http://creativecommons.org/licenses/by/4.0/

Automation in Construction 165 (2024) 105505

2

learning (RL), which was introduced to geotechnics by Erharter et al.
(2021) [12], where the authors presented the first “TunnRL” setup.
Slowly RL starts to attract attention in construction in general [13] and
also in this field [14,15] although the development of RL in geotechnics
is still in its infancy. The TunnRL-CC framework aims to be adaptable
across various TBM construction sites without being restricted to spe-
cific site data, enhancing cutter-changing processes through a system-
atic, RL-based approach.

TunnRL-CC’s realistic simulation models of cutter wear under
varying rock conditions, including hard rock and blockyness, provide a
comprehensive representation of TBM excavation dynamics. A rein-
forcement learning agent is trained to learn optimal cutter-changing
policies based on a reward function that balances cutter conditions
and operational costs. The agent’s ability to adapt to changing excava-
tion conditions and learn complex decision-making algorithms repre-
sents a departure from traditional cutter-changing practices. While
TunnRL-CC has not yet been directly applied in practical projects, its
algorithmic framework and extensive computational experiments
demonstrate its potential to improve TBM cutter maintenance
procedures.

This research introduces an algorithmic framework for TBM cutter
changing that utilizes Reinforcement Learning (RL) to directly optimize
cutter-changing policies, diverging from traditional studies focused on
cutter wear prediction. This method provides several advantages:

• Autonomous decision-making: TunnRL-CC’s RL agent learns to make
decisions without explicit instructions, adapting to changing exca-
vation conditions and complex interactions between cutter wear,
TBM performance, and operational factors.

• Balanced optimization: The reward function in TunnRL-CC balances
the conflicting objectives of maximizing cutterhead lifespan and
minimizing maintenance effort, ensuring a holistic approach to
cutter maintenance.

• Model-free learning: TunnRL-CC’s RL agent learns from experience,
without requiring prior knowledge of the cutter wear or excavation
dynamics. This allows for adaptation to real-world scenarios with
varying rock conditions and TBM configurations.

• Scalability: TunnRL-CC’s framework is designed to be scalable to
different TBM types and tunnel lengths, making it applicable to a
wide range of excavation projects.

The proposed methodology represents a step forward in TBM cutter
changing, paving the way for fully automated cutter maintenance sys-
tems. The extensive computational experiments presented in this paper
demonstrate the effectiveness of the TunnRL-CC framework in opti-
mizing cutter-changing strategies and reducing maintenance costs.
Although further real-world validation is needed, the study’s encour-
aging outcomes suggest the potential of RL to significantly improve TBM
cutter maintenance practices.

In section 2, we present current best practices for TBM cutter
changing. Section 3 explains the TunnRL-CC computational framework
for cutter-changing policy optimization, focusing on the geotechnical
simulation of the cutter wear and excavation process. The main tech-
nical description of the RL agent optimization is given in Appendix A.
The results and a discussion are presented in sections 4 and 5, and lastly,
a conclusion will be drawn in section 6. The complete Python code of the
TunnRL-CC framework is given in the Research Data section at the end
of the paper.

2. TBM cutter changing – Current best practice

This section provides an overview of current best practices for cutter-
changing policies in TBMs, including methodologies, decision-making
criteria, and factors affecting cutter wear. Published literature about
disc cutter changing is sparse (except for [10]), and the information
given in this section is mostly based on the authors’ experience and

direct reports from construction sites.
Currently, cutter changing in TBM operations is performed manually

during planned maintenance intervals, although there are developments
to automate the physical cutter changing process [16,17]. During cutter
changing, worn cutters are physically removed from the TBM’s cutter-
head and replaced with new or refurbished ones. Alternatively, less
worn cutters may be relocated to areas on the cutterhead with higher
wear. The specific procedures and frequency of cutter changing can vary
depending on project requirements, machine specifications, operational
constraints, local experience, and common habits.

The decision to change cutters on a TBM is typically based on a
combination of factors, including: i) Visual inspection: operators visu-
ally assess the wear and condition of the cutter discs by considering
parameters such as cutter profile, degree of wear based on profilometers,
or obvious defects such as flattened or split cutter rings; ii) Performance
monitoring: Real-time monitoring systems track parameters such as
thrust, torque, vibration, or energy consumption to detect changes that
may indicate reduced cutter effectiveness. Automatic disc cutter wear
monitoring is still under development [18]; iii) Maintenance schedules:
Planned maintenance intervals or predefined criteria may dictate the
frequency of cutter changing.

Cutter wear in TBMs is influenced by various factors, including: i)
Geological conditions during excavation significantly affect cutter wear
rates due to variations in hardness and abrasiveness, ii) Cutter design
and layout affect the wear due to the chosen cutter shape, cutter ma-
terial, positioning of cutters on the cutterhead and cutter spacing; iii)
The way the TBM is operated influences cutter wear due to different
factors such as the presence of water or slurry which may be causing
adhesive conditions, cutter contact pressure and cutting speed as a result
of the total TBM thrust and cutterhead rotations.

Ongoing research aims to optimize these practices through data-
driven and machine learning approaches [19], robotics techniques
[16], correlations between cutter wear and other geotechnical param-
eters [20] and factors such as cutter wear patterns and optimization to
harsh geological conditions [21]. Understanding the decision basis for
cutter changing and the influences on cutter wear is crucial for
improving TBM performance, reducing downtime, and enhancing the
overall efficiency of tunnelling operations.

3. TunnRL-CC setup

Reinforcement learning (RL) is a machine learning paradigm where
an agent learns optimal actions through trial and error by interacting
with its environment, aiming to maximize cumulative rewards [22].

Fig. 1. Reinforcement learning principle contextualized for optimizing a cutter
changing policy [11].

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

3

This setup is visually depicted for our specific problem in Fig. 1. This
approach has evolved from basic tabular methods to sophisticated deep
learning algorithms capable of handling complex tasks, ranging from
game playing to real-world applications in healthcare and telecommu-
nications [23–26]. RL algorithms are categorized into on-policy,
learning directly from current actions, and off-policy, which learn
from a different policy’s actions, enabling agents to improve without
current policy execution. Our study utilizes advanced actor-critic algo-
rithms for on-policy learning, such as Proximal Policy Optimization
(PPO) [27] and Advantage Actor Critic (A2C) [28], alongside off-policy
methods like Deep Deterministic Policy Gradient (DDPG) [29], Twin
Delayed DDPG (TD3) [30], and Soft Actor-Critic (SAC) [31] for
continuous control tasks. These methods are chosen for their efficiency
in learning and adaptability, featuring mechanisms like entropy addi-
tion for enhanced exploration and overestimation bias reduction for
stability in training.

At its core, TunnRL-CC consists of an RL setup with an environment
that simulates the TBM excavation and the cutter wear and an RL agent
that controls the cutter changing process. The framework can be run in
three modes of operation:

▪ Optimization: Due to the problem mentioned above that RL
algorithms’ performance is highly sensitive towards their in-
ternal setup (i.e., algorithm’s architecture and hyper-
parameters) the first step is to choose one basic type of RL agent
and optimize its architecture and hyperparameters for the given
environment. The optimization process is done automatically,
and more information is given in section 3.2, 4.1 and Appendix
A.

▪ Training: This mode enables training of one specific agent ar-
chitecture and set of hyperparameters that eventually have
been found in the optimization step.

▪ Execution: This mode enables loading a trained agent and
subsequently running it through a specific number of episodes
to analyze its performance and the methods of cutter changing
applied. The episode records are then used to finalize the cutter
changing policy.

An overview of the TunnRL-CC framework is given in Fig. 2.

3.1. Excavation and cutter changing simulation

The environment simulates the cutter wear process throughout the
TBM excavation and gives the agent both a state- and a reward signal. A
list of all symbols is given in Table B.2. in Appendix B.

The state (S) which the agent observes and uses as a base for its

decisions represents the current life of each cutter. S is a vector of length
nc tot, where nc tot is the total number of cutters of the cutterhead
{
s0, s1,…snc tot

}
and each cutter can take values between 1 (new cutter)

and 0 (broken/worn-off cutter). The normalized cutter life in the range
of 0–1 is based on the theoretical durability of each cutter that is
quantified as cl in “rolling meters per cutter” (e.g., a default cutter life cl
of 40,000 m for each cutter is set based on experience and literature
[32]). Due to the simulation of unique geological conditions in every
episode (see below), the TBM will achieve a higher or lower penetration
rate depending on the encountered geology and consequently the cutters
wear down with respect to the geology: high TBM penetration (soft rock
mass) → few cutterhead rotations per meter → low cutter wear; low TBM
penetration (hard rock mass) → many cutterhead rotations per meter →
high cutter wear. The default cutter life of 40,000 m for each cutter
serves as an initial reference for this study but the actual cutter life can
deviate significantly based on the influences given in section 2. Future
versions of the TunnRL-CC framework will integrate more of them to
offer a more precise prediction of cutter life under various conditions.

After every stroke (also known as “TBM advance”), cl for each cutter
is decreased based on the “travelled distance” of that cutter which is
computed from the cutter’s position on the cutterhead, the length of the
stroke (ls) and the penetration rate (p) of that stroke (see below for how p
is simulated). A “stroke” refers to one advance length of the TBM cor-
responding to one full extension of the machines thrust cylinders (usu-
ally a distance between 1 and 2 m). Depending on the geological
conditions, different numbers of cutterhead rotations can be required to
completely excavate one stroke. In the simulation, inner cutters wear
down slower than outer cutters, which are in good accordance with real
TBM cutter wear [10,32,33]. A basic assumption in the simulation is that
the agent can observe S after every stroke of the TBM, which aligns with
current developments as stated in section 2.

One episode in the simulation consists of a fixed number of ns strokes
excavated by the TBM. Therefore, for every new episode, a new set of
simulated TBM data is generated based on the model for TBM perfor-
mance prediction by Delisio et al. (2014) [34]. This TBM penetration
model was chosen to simulate the excavation process as it is seen to be
well suited to synthesize TBM data for hard rock TBM excavations and
permits including special cutter failure events like failure due to
“blockyness” in the simulation. In the simulation, the TBM penetration
model is based on two sets of data that are being generated by random
walks within boundaries:

▪ a vector of length ns for the volumetric joint count (Jv) [joints /
m3] and

▪ a vector of length ns for the intact rock’s unconfined compres-
sive strength (UCS) [MPa]

Fig. 2. Overview of the TunnRL-CC framework. Left: goal; middle: computational framework; right: result.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

4

The field penetration index for blocky rock mass conditions (FPIblocky)
[kN/m/mm/rot] is then computed with eq. 1 (i.e. eq. 9 in [34]).

FPIblocky = e6*J− 0.82
v *UCS0.17 (1)

To simulate the occurrence of hard to predict failures of individual
cutters due to “blocky” rock mass conditions, between 1 and 4 cutters
have a certain chance to fail in every stroke based on the FPIblocky. Table 1
gives an overview of the failure likelihoods. The chosen ranges are
directly based on the proposed ranges of blockyness of Delisio et al.
(2014) [34] and the chances of cutters to fail were chosen so that a
“sufficient amount of failures” will occur in the simulation. Adapting
boundary conditions like this will also influence the policies that the
agent learns and thus permit to train agents for specific site conditions.
We assume a consistent 1/100 probability of cutter failure for both FPI
ranges: <50 and 200–300. Despite differing physical states—disturbed
and weak for FPI < 50, and blocky or intact for FPI 200–300—both
ranges exhibit homogenous rock mass in their own way, leading to
similar failure risks.

The TBM’s thrust force (TF) [kN] can then be computed with eq. 2
where D represents the TBM’s cutterhead diameter (based on eq. 13 in
Delisio et al. (2014) [34]).

TF = D*(− 523*ln(Jv)+2312) (2)

An upper limit of 20 MN is set for TF as to avoid generation of un-
realistically large thrusts that would not be used in practice to avoid
damaging the machine. Finally, the TBM’s penetration rate (p) [mm/
rot] can be computed with eq. 3 (based on eq. 7 in Delisio et al. (2014)
[34] but note that as opposed to the original equation, the friction force
is already included in the computed TF of eq. 2).

p =
TF

D*FPIblocky
(3)

In Fig. 3, an example is given for one episode of generated data,
including cutter failures due to blocky rock mass behavior, as explained
above.

After every stroke, the agent receives a reward (r) and aims to
maximize the total cumulative reward over the whole episode (R).
Establishing an effective reward function is paramount as it significantly
influences the behavior of the agent and permits conveying of domain
knowledge, thereby ensuring the agent exhibits the desired behavior.
Through extensive testing of the TunnRL-CC framework, the reward
function of eq. 4 was developed which is based on four conditions that
are being checked in sequential order and r will take the value of the first
true condition.

r =

⎧
⎪⎪⎨

⎪⎪⎩

− 1 if condition 1
0 if condition 2

eq.5 if condition 3
eq.6 if condition 4

(4)

The four conditions are:

▪ condition 1: if nc good < nc tot*t with nc good being the number of
cutters with a life >0 and t being a manually set threshold to
control the minimum required number of non-broken / worn-

down cutters on the cutterhead (e.g. 85%, based on construc-
tion site experience).

▪ condition 2: if a bearing failure has occurred on at least 1 cutter.
A bearing failure of a cutter occurs when a cutter was broken
due to blocky rock mass behavior but is not immediately
changed in the subsequent strokes. If this would happen in re-
ality, the cutter’s bearing would fail and thus the whole cutter
would require changing.

▪ condition 3: if no cutter was acted on by the agent (i.e., no
replacement or moving of cutters required – see next section),
then r is computed with eq. 5.

▪ condition 4: in all other cases, r is computed with eq. 6.

r =
nc good

nc tot
(5)

r =
ncgood

nctot

−
crw

cw
*α −

cmw

cw
*β −

dc

nctot

*γ − c*δ (6)

The second term in eq. 6 (crw
cw

) is a penalty for replacing cutters where
crw is the weighted sum of all replaced cutters in that stroke and cw is the
weighted sum of all cutters. The weighting is done linearly by giving a
higher penalty for replacing outer cutters than for replacing inner cut-
ters, thus representing the work effort associated with cutter replace-
ment. The term cmw

cw
represents a penalty for moving cutters from one

position to another on the cutterhead where cmw is again the weighted
sum of all moved cutters of that stroke. dc

nctot
is a penalty for acting on

single cutters where dc represents the total distance between all cutters
that are being acted on in that stroke expressed as their index difference
(e.g., when cutters on positions 3, 12 and 18 are acted on, dc would be
18–3 = 15). This aims to motivate the agent to change cutters in series
instead of single cutters. c is the last penalty for having to enter the
cutterhead in general and should help to motivate the agent to find
efficient strategies. α (replacement), β (movement), γ (distance) and δ
(enter) are weighting factors which help to control the influence of the
four penalties onto r and must all add up to 1. These factors can be
tailored to accommodate site-specific requirements. For instance, in a
project where labor costs are high and/or material prices are low,
prioritizing replacement over movement is recommended and vice
versa.

The reward system gives a r for every stroke in the range of − 1 to 1
and thus an episode with 1000 strokes can have a minimum and
maximum cumulative reward of − 1000 and 1000 respectively. Due to
the many input parameters, a full visualization of the reward space is not
possible, but Fig. 4 gives an overview of six different representative
setups of the reward function for an exemplary environment with 41
cutters (nc tot), a t of 0.85 (i.e. there must be at least 35 cutters with a
cutter life >0), and α, β, γ and δ being set to 0.1, 0.65, 0.1 and 0.15
respectively (values determined by trial and error with the goal to
achieve a comprehensible agent behavior).

The tunnel simulation environment and reward function were
implemented by extending the open AI gym environment API [35].

3.2. Agent

The agent has the task of observing the state of the cutters and, based
on that, performing one of three actions for each cutter: i) do nothing, ii)
replace the cutter with a new one, or iii) move the current cutter to a
new position and replace the original position. Moving of cutters can
only be done towards the center of the cutterhead as it is done on con-
struction sites where cutters are reused (Fig. 5).

The implementation of these three possible actions per cutter leads to
a large action space of shape nc tot*nc tot since for every cutter there must
be nc tot possibilities to move to. The action space therefore is imple-
mented as a flattened nc tot by nc tot matrix (a vector of size nc tot * nc tot)
of indices of cutters. If the ith cutter should be replaced then the matrix at

Table 1
Chances of 1–4 randomly selected cutters to fail within a stroke due to the
occurrence of blocky rock mass conditions.

Range of
FPIblocky

Rock mass structure designation acc. to
Delisio et al. (2014) [35]

Chance of cutters
to fail

> 300 massive 0
300–200 blocky 1/100
200–100 blocky/very blocky 1/50
100–50 very blocky 1/10
< 50 blocky/disturbed 1/100

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

5

position [i, i] must be set to 1 while the other indices remain 0. If the ith

cutter is to be moved to position j, then then the matrix at position [i, j]
must be set to 1 while the other indices remain 0. If a cutter is not to be
replaced or moved, then all indices in the respective cutter’s row need to
be set to 0. A graphical representation of an exemplary action with only
five theoretical cutters for illustrational purposes is given in Fig. 6.

Given this large action space and the requirement that the agent
needs to be suited for multi-action-selection problems limits the choice
of possible agent architectures. The following RL-agent types were
selected for testing in the given environment: Advantage Actor Critic
(A2C) [28], Deep Deterministic Policy Gradient (DDPG) [29], Proximal
Policy Optimization (PPO) [27], Soft Actor Critic (SAC) [31] and Twin
Delayed DDPG (TD3) [30]. The StableBaselines3 [36] implemented
version of these algorithms was used as a base for subsequent, extensive
architecture tuning and hyperparameter optimization with the Optuna
framework [37]. The design of the experimentation framework was
inspired by the architecture of the RL Baselines3 Zoo [36]. The problem
that RL algorithms’ performance is highly dependent on the chosen
agent architecture and hyperparameters is also underlined by this study.
Only the extensive optimization of these algorithms made it possible to
find setups that showed reasonable behavior. In-depth technical infor-
mation on the agents’ architecture, the training, and the parameter
optimization can be found in Appendix A.

4. Results

4.1. Reached performance

The decision-making agent for cutter disk maintenance is an RL
model developed using extensive optimization of agent-architecture and
a wide range of hyperparameters for each algorithm. To ensure the
reliability of the agent’s decisions, we compared them against a manual
process through expert domain reviews. The best-performing agents
show reasonable, sometimes innovative, behavior and have learned a
cutter-changing policy that could be utilized to automate the cutter-
changing process in actual TBM excavations scenarios.

In addition to tuning the hyperparameters of each algorithm, the
network architecture of the multi-layer perceptron model (MLP) played
a crucial role in the optimization process. Unlike in supervised learning
setups where hyperparameter tuning typically leads to minor perfor-
mance increases, here, it made the difference between a model with low
rewards and meaningless actions and models that approached the
theoretical maximum reward value of 1000. The critical significance of
hyperparameter tuning in RL has been well-documented in recent
studies [38,39]. Modifying the network design from the default two-
layer MLP with 64 nodes to an eight-layer network with 1024 nodes
yielded the most significant improvements, particularly in the case of

Fig. 3. 1 exemplary episode with 1000 strokes of generated data as the base for the reinforcement learning simulation. Row 1: volumetric joint count generated by a
random walk with boundaries; Row 2: intact rock UCS generated by a random walk with boundaries; Row 3: computed FPIblocky; Row 4: computed TBM thrust force;
Row 5: computed TBM penetration; Row 6: broken cutters per episode due to the occurrence of blocky rock mass behavior in individual strokes.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

6

the TD3 algorithm. For detailed information on the parameters of the
best-performing TD3 model, refer to Table B.1. in Appendix B. It outlines
the key parameters that contributed to its performance. In Appendix A,
we provide a comprehensive description of the hyperparameter opti-
mization process.

The optimization of agents utilized the environment settings from
Table 2, tailored for a standard TBM machine in an infrastructure tunnel.
The framework, tested across various tunnel diameters and cutter
numbers, is applicable to typical infrastructure TBM machines, accom-
modating a wide range of parameters. Parameters that represent actual
values of TBM excavation were set based on the authors’ experience in
tunnelling. The α, β, γ, δ weighting factors in the reward function (see eq.
6), summing to 1.0, were determined through an iterative trial and error
process. The aim was to balance the penalties associated with each
factor, thereby achieving a confident learning process and an agent
performance that closely mimics human behavior. Results are consid-
ered to be reasonable if they led to a stable learning process and a
comprehensible agent performance, while unreasonable results led to
erratic or inconsistent agent behavior, or a non-converging learning
process.

Table 3 summarizes the performance of the five RL algorithms
employed in training the agents. Clear distinctions emerge, with off-
policy algorithms, TD3 and DDPG, outperforming the on-policy coun-
terparts in terms of reward, training time, and practical performance
metrics. Among them, TD3 exhibits the best performance, achieving a
reward of 942 (theoretical max: 1000), which aligns with its superior
results for other metrics. From a computational perspective, TD3 and
A2C were the most efficient ones to train in the used framework and SAC
was the least efficient (several magnitudes slower than TD3). Given the
large number of required training episodes, the computational demand
is crucial for successful training. A noticeable discrepancy arises be-
tween off-policy and on-policy algorithms when considering practical
performance metrics. The TD3 agent demonstrates a lower average

cutter replacement rate (0.028 per stroke) and focuses on relocating
worn cutters to positions with lower wear in the center of the cutterhead
(1.66), resulting in 1.35 broken cutters per stroke. The TD3 agent’s
ability to manage various degrees of wear in cutters showcases its
innovative behavior. Even though DDPG achieves the second highest
performance in Table 3, much fewer DDPG trials achieved such a high
reward compared to TD3.

On the other hand, the on-policy A2C avoids broken cutters but uses
more effort in both replacement (29.8) and movement (11.2) of cutters.
These findings are considered while assessing the plausibility of de-
cisions and their practical utility in real-life scenarios. In today’s prac-
tice, the widespread replacement of cutters per stroke is not
economically sustainable. Nonetheless, such results may hold signifi-
cance in settings where broken cutters are prohibited or in specific cases
defined by contractual obligations, machine capabilities, or geological
factors.

Fig. 7 visualizes the learning paths of 515 runs using different pa-
rameters for the TD3 algorithm, showcasing the substantial variability in
outcomes. Many parameter combinations lead to poorly performing
models with negative or low rewards. Three main trajectories emerge: i)
starting low and gradually reaching the maximum reward, ii) starting
similarly but stabilizing to a local optimum around 120 due to conver-
gence to a suboptimal policy, and iii) exhibiting oscillations in the lower
region. These trajectories emphasize the significance of parameter se-
lection in achieving optimal performance.

Fig. 8 compares the performance of the different algorithms for the
five best performing agents for each RL-algorithm. The reward devel-
opment depicts the learning path of the agents. It is worth noting the
disparity in the number of training episodes required to achieve
maximum performance. Notably, off-policy algorithms exhibit faster
learning and reach higher levels of performance compared to on-policy
algorithms.

Fig. 9 provides further insights into the learning process of the best
performing agent, specifically demonstrating how the learning process
correlates with improved maintenance outcomes in terms of reduced
broken cutters, replaced cutters, and moved cutters during the excava-
tion of a tunnel using a TBM equipped with 41 cutters per episode. The
metrics show average values for a single episode consisting of 1000
strokes, each spanning 1.8 m in length, during which a tunnel is exca-
vated. It is important to note that these metrics can vary significantly
within the episode. From the summarized metrics presented in Table 3,
we observe that the TD3 algorithm achieves a mean value of 1.35 broken
cutters per stroke. Fig. 9 shows how the learning process of the TD3
algorithm leads to fewer broken cutters, reduced replacements, and
minimized movement of cutters during tunnel excavation.

The learning process in the TD3 algorithm shows a pattern where
maximum performance coincides with the lowest loss value for the actor
around episode 1200. However, beyond this point, the performance
becomes unstable and deteriorates. This pattern emphasizes the
importance of selecting a trained agent at the appropriate episode to
ensure optimal performance. The observed pattern of deteriorating
performance and increasing or chaotic loss after reaching maximum
reward is a common phenomenon in training neural networks, indi-
cating overfitting to outliers and fine-grained details in the training data.
In TD3, the actor learns to select actions based on a policy that maxi-
mizes the expected cumulative reward, while the critic estimates the
value that assesses the quality of different actions within a given state.
Overfitting in RL refers to the actor becoming excessively specialized to
the training environment, thereby struggling to generalize to new states
or environments [22]. Increasing or unstable loss indicates a degrada-
tion in performance when encountering new, unseen states or environ-
ments. Like supervised learning, the training process aims to enhance
the generalization capability of the trained agent, enabling it to perform
well in unseen environments or states.

Fig. 4. Exemplary values of the reward function for an environment with 41
cutters. At least 35 functional cutters are required to achieve a reward > − 1
(dashed line). Individual rewards are: 1) no replaced cutters, no moved cutters,
no bearing failure; 2) 5 replaced cutters, no moved cutters, no bearing failure;
3) no replaced cutters, 5 moved cutters, no bearing failure; 4) 10 replaced
cutters, 10 moved cutters, no bearing failure; 5) 5 replaced cutters, 20 moved
cutters, no bearing failure (see Fig. 10 for this reward in action); 6) no replaced
cutters, no moved cutters, bearing failure.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

7

4.2. Agent behavior at maximum performance

When the best agent’s behavior is analyzed, the general environ-
mental- and especially the settings of the reward function must be
considered (see section 3.1) since these are highly influential on how the
agent’s final policy is. The parameters of Table 2 in combination with
the optimized TD3 agent as described in the previous section led to the
following behavior. Fig. 10 visualizes the decisions made by a trained
TD3 agent in excavating 300 strokes of 1.8 m (540 m of sequential
tunnel excavation) for one exemplary rock mass environment.

The most obvious feature of the learned policy is that to the agent
avoids entering the cutterhead excessively often. Typically, there are
15–40 strokes between each maintenance effort. When the reward has
lowered for several strokes, due to the wearing of cutters, the agent

Fig. 5. For every cutter, the agent must choose between three actions: i) do not act on the cutter; ii) replace the cutter; iii) move the cutter to another position
towards the center and replace the original position. The numbers besides the graphical representation of the state show the cutter life in the numerical range
between 0 and 1.

Fig. 6. Exemplary action with 5 cutters only. Cutters 1 and 5 are not acted on.
Cutters 2 and 4 have been replaced and cutter 3 is being moved from position 3
to position 5.

Table 2
Environment settings that were used for the optimization
of the agents. A description of the parameters is given in
section 3.1, and a summary of all symbols in the
Appendix.

Parameter Value

D [m] 8
nc tot [−] 41
cl [m] 40,000
ns [−] 1000
ls [m] 1.8
t 0.85
α, β, γ, δ 0.1, 0.65, 0.1, 0.15

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

8

Table 3
Summarized metrics for experiments of the top performing agents of each of the five algorithm types. Off = off-policy algorithm, on = on-policy algorithm.

Algorithm Maximum Reward Episode num max reward Number of trials for the algorithm Avg. replaced cutters Avg. moved cutters Avg. broken cutters

TD3 (off) 945 1264 515 0.028 1.66 1.348
DDPG (off) 879 400 393 0.002 2.13 1.346
A2C (on) 650 3448 324 29.8 11.2 0
PPO (on) 637 5296 293 35.04 1.23 0.775
SAC (on) 205 468 41 0.862 34.3 0.14

Fig. 7. Learning paths for 515 trials of training a TD3 agent.

Fig. 8. Best five performing agents for each of five algorithms, off-policy algorithms to the left and on-policy algorithms to the right (note the different x- and y-scales
of the left and right figure).

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

9

Fig. 9. Exemplary training process for best performing agent, using the TD3 algorithm. Top row shows the reward development, middle row the development of
maintain status indicators for TBM, lower describes development in algorithm loss value.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

10

decides to act, perform maintenance (with a cost illustrated in the drop
of the reward), thus making sure the cutterhead is in good shape and a
high reward is re-established. All actions on cutters (i.e., replacing and
moving of cutters) are bundled together and the agent tends to act on
almost all cutters simultaneously. This is a strong improvement over the
behavior of the agents in the preliminary study which were much more
random in [11]. Another improvement over underperforming agents is
that these sometimes focus on specific individual cutters only, while this
behavior is not given in the best-performing TD3 agents. With the given
set of environmental parameters, another behavior that can be observed
is that the agent has learned to favor moving cutters instead of replacing
them except for the centermost cutters which are rather replaced than
moved. To a certain extent the agent accepts up to three simultaneous
broken cutters for some strokes but hardly ever more than one single
broken cutter on the cutterhead (visualized as black horizontal lines for
cutter life in Fig. 10). A strange behavior that can be occasionally
observed is that the agent sometimes acts in two consecutive strokes and
performs multiple moves and replacements in both.

Fig. 11 shows a visualization of different recordings for running a
trained TD3 agent for a full exemplary episode, enriched with more
metrics and alternative presentations than in Fig. 10. The above-
described agent behavior is well visible.

4.3. Overall cutter changing policy analyses

To analyze the action space, 30,000 individual actions from 30 epi-
sodes where the best performing agent was executed were collected. The
individual action-vectors have the size nc tot*nc tot, which in the case of
the environment setup of Table 2 equals to 1681-dimensional action
vectors. To analyze these high dimensional actions, the dimensionality
reduction algorithm “t-distributed stochastic neighborhood embedding”
(t-SNE) [40] was used to project the 30,000, 1681 dimensional actions
down to a 2D map. The “Uniform Manifold Approximation and Projec-
tion for Dimension Reduction” (UMAP) [41] algorithm was also tested
but produced very similar results as t-SNE and thus the t-SNE repre-
sentation of the data shall be shown here as it is the more widely used
algorithm. The most influential parameter for the outcome of t-SNE is

the “perplexity” which controls to which extent the algorithm balances
the attention between the local and the global aspects of the data [42].
The best results – in terms of clearness of the structure of the t-SNE map –
were found with a high perplexity of 1000 which is related to the large
number of datapoints and also to the goal to find out more about the
global relationship and patterns within the actions.

t-SNE often produces representations of the data in the form of clear
clusters in cases of inherently categorical data (e.g., Fig. 2 in van der
Maaten and Hinton (2008) [40]) or “clouds” of datapoints with different
densities when there is no clear grouping within the original data (e.g.,
extended data Fig. 1 in [43]). Multiple t-SNE embeddings of the 30 k
actions show a recurring and consistent pattern, which can be described
as two clusters that each have a pronounced linear geometry that in-
dicates an action space with a linear continuous topology (Fig. 12).
Where the smaller cluster represents actions where cutters have been
acted on, the larger cluster represents actions without any actual agent
activity. Within the small cluster of actions that contain cutter changes
and replacements, these actions represent a continuous transition from
“low average cutter life → many cutter movings and replacements” to
“high average cutter life → few cutter movings and replacements”.
Different color coding in Fig. 12 b)-d) show this clearly and illustrate
how the reward is high for actions that do not require any replacement
of moving of cutters and lower for actions that do.

5. Discussion

The results of the previous section show that while reasonable per-
formance can be achieved, the learning process is unstable and sensitive
to the chosen input parameters. The environment setting of Table 2 was
chosen based on the authors’ experience. However, future studies are
encouraged to investigate other parameters and especially weight
combinations of α, β, γ, δ. The inherent instability in the learning process
(which can be attributed to the exploration setup of the algorithm,
necessary for discovering new policies) is the necessity to train multiple
agents using the best parameters and subsequently select the best per-
forming one. Retraining an agent using optimized parameters does not
guarantee good performance. In our experiments, it was common to

Fig. 10. Decisions made by a trained TD3 agent excavating 300 strokes of 1.8 m (540 m sequential tunnel excavation). In every stroke (visualized by a vertical line)
we see the status of the reward, the wearing of each of the 41 cutters, and an eventual action made on each of the cutters. Note the pattern of replacement of center
cutters (lower numbers) and movement of outer cutters.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

11

observe that 9 out of 10 trials resulted in poorly performing agents,
despite utilizing the best parameters. However, this situation is not
necessarily problematic since some of the trials yield well-performing
agents that can be saved and utilized for execution.

By training multiple agents and selecting the best-performing one,
we increase the likelihood of obtaining an agent that demonstrates
satisfactory performance. This approach accounts for the instability and
unpredictability inherent in the learning process and ultimately enables
the identification of agents with high performance.

It is observed that the highest-performing agents are bundling their
cutter maintenance efforts together as far as possible. The reason for
bundling of maintenance efforts is seen in the reward function’s (eq. 6)
incentives to change cutters in series and the general penalty of entering
the cutterhead (fourth and fifth term of eq. 6).

The reason for the agents’ affinity towards moving cutters instead of
replacing them is seen in the fact that the reward function raises an
incentive for moving and the fact that moving a cutter also replaces the
original position with a new cutter. Thus, the agent might perceive this
as “cheaper” than just replacing the cutter. The observation that center
cutters are replaced rather than moved can be interpreted with the
setting of the reward function, which favors moving cutters from the
outside to the inside of the cutterhead where the wear is lower.

The observed behavior that agents sometimes act on two consecutive
strokes is presumably related to the current setting for bearing failure
(see reward function condition 2 in section 3.1) since this behavior can
often be observed close to an occurred failure due to blocky rock mass
behavior. As given in section 3.1, a failure of a cutter due to blockyness

should be responded to with an immediate change of this cutter to avoid
a bearing failure. Since cutter failure due to blockyness only affects
single cutters, which would need immediate changing, this conflicts
with the overall incentive not to change individual cutters and thus
creates a hard-to-solve situation for the agent that would require a
special behavior for single “exotic” events.

6. Conclusions

The study examined the use of reinforcement learning (RL) algo-
rithms to optimize cutter-changing policies in Tunnel Boring Machine
(TBM) excavation, presenting a computational framework adaptable to
various TBM operations. Extensive experimentation and analysis pro-
vided insights into the performance and effectiveness of different RL
algorithms in this context. The findings highlight the importance of
hyperparameter optimization in achieving successful RL models. Due to
the low reproducibility of trained agents, a strategy involving training
10–100 agents and selecting the best-performing agent was successfully
employed. Notably, among the algorithms studied, the off-policy TD3
model showed high performance, achieving substantial rewards and
plausible actions.

The trained agent adopted a cutter maintenance approach around
every 20 strokes, prioritizing the relocation of worn cutters to areas with
less wear on the cutterhead rather than immediately replacing them.
This strategy resulted in an average of 1.35 broken cutters per stroke,
considering a TBM equipped with 41 cutters. Note that the simulated
rockmass can be seen as “extremely abrasive” due to these numbers, but

Fig. 11. Visualization of the recordings of one exemplary episode. The top row shows the cutters’ life with a color coding acc. to cutter positions. The second and
third rows show the number of moved and replaced cutters (with a vertical line at a certain stroke) respectively and the histograms to the right show the number of
moves / replacements per cutter position. The fourth row shows the received reward per stroke and the total cumulative reward of the episode to the right.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

12

Fig. 12. t-SNE dimensionality reduction of 30 k actions of the best-performing agent. a) color coding acc. to average cutter life of the state that corresponds to the
action; b) reward received after the action; c) number of replaced cutters as a result of the action; d) number of moved cutters as a result of the action.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

13

the simulation can also be adjusted to account for less abrasive rockmass
conditions. Changing the size of the cutterhead / the number of cutters is
possible, but it must be considered that an increasing number of cutters
results in an exponentially growing action space (see section 3.2) and
thus vastly increasing computational demand and complexity of the
problem for the agent to solve. The reward function’s weightings can be
adjusted to adapt the policy to specific site conditions by creating higher
incentives for e.g. moving cutters instead of replacing them with the
weighting factors α, β, γ and δ (see section 3.1). The development and
implementation of an RL-based recommender system for cutter-
changing policies in TBMs offer benefits for various stakeholders,
including: i) TBM site operators: The use of RL algorithms, such as the
high-performing TD3 model, can optimize cutter-changing decisions,
resulting in enhanced TBM performance, increased productivity, and
reduced downtime. Operators can benefit from improved maintenance
strategies, cost savings, and more efficient tunnel excavation processes
leading to better resource allocation, improved maintenance scheduling,
and reduced manual inspection effort. ii) Project owners and contrac-
tors: Optimized cutter changing policies, driven by RL algorithms, can
contribute to project cost reductions, improved project timelines, and
increased overall project efficiency. This benefits project owners and
contractors by ensuring smoother operations and successful project
completion.

A practical implementation of the RL-based recommender system for
cutter changing policies for TBM tunnelling could involve the following
components: i) Real-time data collection: Sensors and monitoring sys-
tems installed in the TBM gather data on various parameters such as
cutter wear, bearing condition, thrust, torque, vibration, and energy
consumption. ii) Data processing and analysis: The collected data is
processed and fed as state information to the RL-based recommender
system, such as a trained TD3 agent, which evaluates the current cutter
status and recommends appropriate cutter changing actions before the
next stroke. iii) Decision support interface: The system provides rec-
ommendations to TBM operators or maintenance crews through an
intuitive user interface, assisting them in making well-informed de-
cisions regarding cutter changing. iv) Continuous learning and
improvement: Leveraging human feedback on the agents’ decisions can
be used to update the agent, and further enhance its recommendations
over time.

7. Outlook

While the TunnRL-CC framework can be used as a support for
decision-making in real tunnelling today, there are several points that
still can be improved in future studies:

i) The reward function contains penalties for excessive work effort
for cutter maintenance which is simply based on the cutters’
position on the cutterhead (i.e., outer cutters need more effort
than inner cutters). The subsequent advancement entails incor-
porating a sophisticated model that considers the intricate ge-
ometry of the cutterhead, including its inner layout featuring
multiple bucket chambers. By integrating this enhanced model,
the system can incentivize the replacement of cutters within a
single bucket chamber while penalizing the effort involved in
moving cutters between chambers. (i.e., include a shortest path
problem).

ii) The current penetration model after Delisio et al. (2014) [34] is
seen as well suited to simulate geological conditions for hard rock
excavation in blocky rock mass conditions. Different penetration
models could be considered and/or established to get represen-
tative simulations in other geological conditions.

iii) The reward function controls the agent’s behavior and is the lever
that allows adjustment of the learned policy towards construction
site specific geological, logistical and economic conditions.
Further investigations about the extent to which the reward

function’s parameters α, β, γ and δ control the learned policy
should be conducted in order to achieve site specific tailored
policies.

iv) The current study has done extensive optimization of advanced
RL models to find an effective setup for the given environment.
However, optimizing RL agents is challenging due to the low
repeatability of single model runs and the resulting uniqueness of
the optimized agents and thus optimization schemes that work
for supervised learning are only of limited help for RL. Further
investigations about efficient large-scale parametric studies and
optimizations of RL algorithms are therefore required.

v) The presented study shows a simulation-driven approach towards
agent-based optimization of TBM cutter changing. Simulations
were necessary to ensure the computational feasibility of the RL
approach but a theoretical proof of concept is given. Including
real world data from construction sites is the necessary next step
to validate the learned policies and demonstrate that this
approach also works under operational conditions.

Moving forward, refining TunnRL-CC with real-world data and
tailored optimization will be essential for practical application. The
presented cutter changing policy optimization systems TunnRL-CC fits
well into recent developments in TBM tunnelling and can be the missing
link between automated cutter state monitoring [18] and robotic
replacement of cutters in the cutterhead [16]. These enhancements will
solidify the role of RL in advancing TBM maintenance and set a prag-
matic course towards smarter and more efficient tunnelling operations.

Research data

The full TunnRL-CC software can be found as a locked release version
with Python code under the following Github repository: https://github.
com/TunnRL/TunnRL_TBM_maintenance/releases/tag/v2.0.0

CRediT authorship contribution statement

Tom F. Hansen: Writing – original draft, Software, Methodology,
Investigation, Data curation, Conceptualization. Georg H. Erharter:
Writing – original draft, Software, Project administration, Methodology,
Investigation, Data curation, Conceptualization. Thomas Marcher:
Writing – review & editing, Conceptualization.

Declaration of competing interest

Declaration of Generative AI and AI-assisted technologies in the
writing process.

During the preparation of this work the authors used “Bard: Google’s
AI research chatbot” (Retrieved from https://bard.google.com/) in
order to improve the readability and language of some paragraphs in the
abstract and first section. After using this service, the authors reviewed
and edited the content as needed and take full responsibility for the
content of the publication.

Data availability

The study is fully based on the developed TunnRL-CC software
package that is given in the manuscript’s Research Data section. No
other data sources were used that must be stated.

Acknowledgments

Prof. Amund Bruland (NTNU) and Mr. Gamal Heikal are thanked for
their input during the conceptualization phase of this study. Code re-
view and code design advice from Ida Norderhaug Drøsdal is also highly
appreciated.

This research received no specific grant from funding agencies in the

T.F. Hansen et al.

https://github.com/TunnRL/TunnRL_TBM_maintenance/releases/tag/v2.0.0
https://github.com/TunnRL/TunnRL_TBM_maintenance/releases/tag/v2.0.0
https://bard.google.com/

Automation in Construction 165 (2024) 105505

14

public, commercial, or not-for-profit sectors. Open Access funding was provided by the University of Oslo.

Appendix A. Extended technical description of parameter optimization for different agents

Hyperparameter optimization plays a crucial role in training RL agents, as acknowledged in prior research [38,39]. Taking inspiration from the
experimental setup for hyperparameter orchestration and following the guidelines provided in RL baselines3 Zoo [36], we established a hyper-
parameter tuning framework based on Optuna [37]. This framework incorporated the latest practices, including defining reasonable intervals for
hyperparameters and tailoring specific configurations for each algorithm under investigation. Additionally, we developed specialized functions to
ensure scalability in network design and learning rates, catering to the unique requirements of the task at hand.

In our experiments, we evaluated the performance of the trained agent at regular intervals, typically every 50–100 episodes (varying for different
algorithms). To assess performance, we loaded the best performing agents obtained up until that point and executed their decisions in the environment
for the last 10 episodes. Subsequently, we calculated the mean performance as an indicator of the agent’s effectiveness. This process allowed us to
monitor the agent’s progress over time and make informed decisions regarding parameter optimization.

The parallel coordinate plots in Figs. A.1-A.4 provide insights into the sensitivity of various hyperparameters to the final reward. It is evident that
TD3 demonstrates robustness in handling a wide range of values for most parameters. In contrast, the other algorithms exhibit optimal results within
narrower ranges of parameter values. Despite its generality, TD3 has some parameters crucial for performance that we want to point out:

▪ The use of more complex networks with additional layers and significantly more nodes compared to the default setup.
▪ A longer policy delay update period, above 5 steps (default is 2). This addresses a problem in DDPG, which TD3 builds upon.
▪ Learning starts after around 300 steps (default is 100). In this first period the agent samples valid actions from a random uniform distribution.

More steps enhance its exploratory capabilities.
▪ The absence of noise injection regulates the exploratory capabilities of the agent.

In the case of the best on-policy model, PPO, a distinct band of best performing parameters can be observed. Compared to TD3, the core network
architecture for PPO is notably smaller. A characteristic of models that are less dependent on hyperparameters was the lower degree of reproducibility
when using the best performing parameters. For example, running TD3 ten times with these parameters resulted in a well-performing model,
achieving a reward above 900, only once out of ten attempts. On the other hand, a comparable run using PPO consistently yielded high rewards, over
600, in all ten repeated runs. This suggests that PPO exhibits greater stability and reproducibility when utilizing the best performing parameters
compared to TD3, still TD3 performs notably better when it is successful.

During the experiments, it was observed that several trials reached a dead-end trajectory with a local optimum, even when using the exact same
parameters as earlier successful runs. Running into local optima is a well-known problem of DDPG and TD3 [44] and was particularly noticeable in the
plots of experiment trials of these algorithms, as depicted in Fig. A-5. This phenomenon, along with the necessity of conducting numerous hyper-
parameter experiments, posed challenges in effectively managing computational resources for numerous experiments necessary. To address this issue,
we implemented functionality for parallel runs of Optuna trials using the Joblib library [45]. This allowed multiple trials to be executed concurrently,
utilizing different computer nodes. To facilitate reproducibility and streamline the experimentation process on High-Performance Computing (HPC)
machines, we containerized the training code using Docker containers. By containerizing the code, we ensured consistent execution environments and
simplified the deployment of the training process.

To simplify parameter configuration and ensure effective management of parameters across different experiments, we leveraged the Hydra
framework [46]. Hydra allowed us to easily configure and keep track of parameters in various experimental setups. Additionally, we employed
MLflow [47] to track metrics for each experiment, enabling us to compare the performance of different runs systematically.

During the execution of each experiment, which could span several hours, we utilized Tensorboard to monitor the development of metrics. This
real-time evaluation facilitated the early termination of certain experiments when deemed necessary. To enhance the training process and gain deeper
insights, we implemented a range of callbacks. These callbacks interacted with the agent during training, captured the state of the environment, and
logged and visualized the training process. By incorporating these callbacks, we were able to gain a comprehensive understanding of the agent’s
progress and performance throughout the training process.

Fig. A.1. Parallel coordinate plot that shows parameter combinations during the optimization of the TD3 algorithm.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

15

Fig. A.2. Parallel coordinate plot that shows parameter combinations during the optimization of the DDPG algorithm.

Fig. A.3. Parallel coordinate plot that shows parameter combinations during the optimization of the A2C algorithm.

Fig. A.4. Parallel coordinate plot that shows parameter combinations during the optimization of the PPO algorithm.

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

16

Fig. A.5. Optimization process visualized in trial number versus reward for the same algorithms.

Appendix B. Tables with additional information

Table B1
Optimized hyperparameters for best performing TD3-agent.

Parameter Value

Action noise None
Activation function tanh
Batch size 200
Gamma 0.9766519262714228
Gradient steps 8
Learning rate 8.86666407593999e-05
Learning starts 600
Lr schedule Linear decrease
Number of nodes in layer 1024
Number of layers 8
Policy delay 10
Target noise clip 0.42580299347844197
Target policy noise 0.09564547952520154
Tau 0.0028384818651399457

T.F. Hansen et al.

Automation in Construction 165 (2024) 105505

17

Table B2
Overview table of all used symbols.

Symbol Unit Explanation

S – State vector
nc tot – Total number of cutters on the cutterhead
cl [m] Cutter life expressed as the total rolling distance of one cutter
ls [m] Length of one stroke of the TBM
p [mm/rot] Penetration rate of the TBM
ns – Number of strokes in one episode
Jv [joints / m3] Vector of length ns with values for the volumetric joint count
UCS [MPa] Vector of length ns with values for the intact rock unconfined compressive strength
FPIblocky [kN/m/mm/rot] Field penetration index for blocky rock mass conditions acc. to [34]
TF [kN] Thrust force of the TBM
D [m] Diameter of the TBM cutterhead
r – Reward that the agent receives after every stroke
R – Cumulative reward of one whole episode
nc good – For reward: number of cutters with a cl > 0
t [%] For reward: threshold of minimum required number of cutters with a cl > 0
cw – For reward: linearly weighted sum of all cutters where outer cutters have a higher weight than inner cutters
crw – For reward: linearly weighted sum of all replaced cutters where outer cutters have a higher weight than inner cutters
cmw – For reward: linearly weighted sum of all moved cutters where outer cutters have a higher weight than inner cutters
dc – For reward: total distance between all cutters that have been acted on expressed as index difference
c – For reward: penalty for effort of having to enter the cutterhead
α, β, γ, δ – For reward: weighting factors to adjust penalties to different construction economic conditions.

References

[1] K. Gehring, Leistungs- und Verschleißprognosen im maschinellen Tunnelbau,
Felsbau (1995) 439–448.

[2] K. Thuro, Geologisch-felsmechanische Grundlagen der Gebirgslösung im
Tunnelbau: Habilitationsschrift, in: Münchner Geologische Hefte, Reihe B, 2002,
pp. 1–160.

[3] L. Wang, Y. Kang, Z. Cai, Q. Zhang, Y. Zhao, H. Zhao, P. Su, The energy method to
predict disc cutter wear extent for hard rock TBMs, Tunn. Undergr. Space Technol.
28 (2012) 183–191, https://doi.org/10.1016/j.tust.2011.11.001.

[4] J. Hassanpour, J. Rostami, S. Tarigh Azali, J. Zhao, Introduction of an empirical
TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case
history of Karaj water conveyance tunnel, Iran, Tunn. Undergr. Space Technol. 43
(2014) 222–231, https://doi.org/10.1016/j.tust.2014.05.007.

[5] R.J. Plinninger, M. Alber, J. Düllmann, Rock mass-scale factors with an influence
on tool wear in the mechanised tunnelling process in hard rock, Geomechanik und
Tunnelbau 11 (2018) 157–168, https://doi.org/10.1002/geot.201700068.

[6] L. She, S. Zhang, C. Wang, Y. Li, M. Du, A new method for wear estimation of TBM
disc cutter based on energy analysis, Tunn. Undergr. Space Technol. 131 (2023)
104840, https://doi.org/10.1016/j.tust.2022.104840.

[7] N. Zhang, S.-L. Shen, A. Zhou, A new index for cutter life evaluation and ensemble
model for prediction of cutter wear, Tunn. Undergr. Space Technol. 131 (2023)
104830, https://doi.org/10.1016/j.tust.2022.104830.

[8] Y. Liu, S. Huang, G. Di Wang, D. Zhang Zhu, Prediction model of tunnel boring
machine disc cutter replacement using kernel support vector machine, Appl. Sci. 12
(2022) 2267, https://doi.org/10.3390/app12052267.

[9] X. Shen, X. Chen, Y. Fu, C. Cao, D. Yuan, X. Li, Y. Xiao, Prediction and analysis of
slurry shield TBM disc cutter wear and its application in cutter change time, Wear
498-499 (2022) 204314, https://doi.org/10.1016/j.wear.2022.204314.

[10] E. Farrokh, Cutter change time and cutter consumption for rock TBMs, Tunn.
Undergr. Space Technol. 114 (2021) 104000, https://doi.org/10.1016/j.
tust.2021.104000.

[11] G.H. Erharter, T.F. Hansen, Towards optimized TBM cutter changing policies with
reinforcement learning, Geomechanics and Tunnelling 15 (2022) 665–670,
https://doi.org/10.1002/geot.202200032.

[12] G.H. Erharter, T.F. Hansen, Z. Liu, T. Marcher, Reinforcement learning based
process optimization and strategy development in conventional tunneling, Autom.
Constr. 127 (2021), https://doi.org/10.1016/j.autcon.2021.103701.

[13] N.S. Kedir, S. Somi, A.R. Fayek, P.H. Nguyen, Hybridization of reinforcement
learning and agent-based modeling to optimize construction planning and
scheduling, Autom. Constr. 142 (2022) 104498, https://doi.org/10.1016/j.
autcon.2022.104498.

[14] A. Biniyaz, B. Azmoon, Z. Liu, Intelligent control of groundwater in slopes with
deep reinforcement learning, Sensors (Basel) 22 (2022), https://doi.org/10.3390/
s22218503.

[15] E. Soranzo, C. Guardiani, W. Wu, The application of reinforcement learning to
NATM tunnel design, Underground Space (2022), https://doi.org/10.1016/j.
undsp.2022.01.005.

[16] L. Du, J. Yuan, S. Bao, R. Guan, W. Wan, Robotic replacement for disc cutters in
tunnel boring machines, Autom. Constr. 140 (2022) 104369, https://doi.org/
10.1016/j.autcon.2022.104369.

[17] J. Yuan, R. Guan, J. Du, Design and implementation of disc cutter changing robot
for tunnel boring machine (TBM), in: 2019 IEEE International Conference on
Robotics and Biomimetics (ROBIO), 2019, pp. 2402–2407. doi:https://doi.org/10
.1109/ROBIO49542.2019.8961494.

[18] H. Lan, Y. Xia, Z. Ji, J. Fu, B. Miao, Online monitoring device of disc cutter wear –
design and field test, Tunn. Undergr. Space Technol. 89 (2019) 284–294, https://
doi.org/10.1016/j.tust.2019.04.010.

[19] A. Mahmoodzadeh, M. Mohammadi, H. Hashim Ibrahim, S. Nariman Abdulhamid,
H. Farid Hama Ali, A. Mohammed Hasan, M. Khishe, H. Mahmud, Machine
learning forecasting models of disc cutters life of tunnel boring machine, Autom.
Constr. 128 (2021) 103779, https://doi.org/10.1016/j.autcon.2021.103779.

[20] M.-H. Rajati, J. Rostami, H. Memarian, M.-T. Hamzaban, A study on predicting the
wear of TBM disc cutters using Cerchar testing, Tunn. Undergr. Space Technol. 140
(2023) 105290, https://doi.org/10.1016/j.tust.2023.105290.

[21] L. Brackmann, A. Röttger, M. Treppmann, S. Weber, The behavior of cutting discs
for mechanized tunneling under cyclic loading conditions, Tunn. Undergr. Space
Technol. 137 (2023) 105151, https://doi.org/10.1016/j.tust.2023.105151.

[22] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, Second edition,
The MIT Press, Cambridge Massachusetts, 2018. ISBN: 9780262039246.

[23] X. Zhao, C. Gu, H. Zhang, X. Yang, X. Liu, J. Tang, H. Liu, DEAR: Deep
Reinforcement Learning for Online Advertising Impression in Recommender
Systems, arXiv preprint, arXiv:1909.03602, 2019, https://doi.org/10.48550/
arXiv.1909.03602.

[24] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y.
T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M.T. Ribeiro, Y. Zhang, Sparks of
Artificial General Intelligence: Early Experiments with GPT-4, arXiv, https://arxiv.
org/pdf/2303.12712.pdf?utm_source=webtekno, 2023. (Accessed 20 December
2023).

[25] A. Raghu, M. Komorowski, I. Ahmed, L. Celi, P. Szolovits, M. Ghassemi, Deep
Reinforcement Learning for Sepsis Treatment, arXiv preprint, arXiv:1711.09602,
2017, https://doi.org/10.48550/arXiv.1711.09602.

[26] R. Li, Z. Zhao, Q. Sun, C.L.I.C. Yang, X. Chen, M. Zhao, H. Zhang, Deep
reinforcement learning for resource Management in Network Slicing 6, IEEE
Access, 2018, pp. 74429–74441, https://doi.org/10.1109/ACCESS.2018.2881964.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy
Optimization Algorithms. http://arxiv.org/pdf/1707.06347v2, 2017.

[28] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley, D. Silver,
K. Kavukcuoglu, Asynchronous Methods for Deep Reinforcement Learning, 2016,
https://doi.org/10.48550/arXiv.1602.01783.

[29] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
D. Wierstra, Continuous control with deep reinforcement learning, in: ICLR, 2016,
https://doi.org/10.48550/arXiv.1509.02971.

[30] S. Fujimoto, H. van Hoof, D. Meger, Addressing Function Approximation Error in
Actor-Critic Methods, in: Proceedings of the 35th International Conference on
Machine Learning, 2018, https://doi.org/10.48550/arXiv.1802.09477. Stockholm,
Sweden.

[31] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018, https://doi.
org/10.48550/arXiv.1801.01290.

[32] B. Maidl, L. Schmid, W. Ritz, M. Herrenknecht, Hardrock Tunnel Boring Machines,
Ernst, Berlin, 2008. ISBN: 978–3–433-01676-3.

T.F. Hansen et al.

http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0005
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0005
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0010
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0010
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0010
https://doi.org/10.1016/j.tust.2011.11.001
https://doi.org/10.1016/j.tust.2014.05.007
https://doi.org/10.1002/geot.201700068
https://doi.org/10.1016/j.tust.2022.104840
https://doi.org/10.1016/j.tust.2022.104830
https://doi.org/10.3390/app12052267
https://doi.org/10.1016/j.wear.2022.204314
https://doi.org/10.1016/j.tust.2021.104000
https://doi.org/10.1016/j.tust.2021.104000
https://doi.org/10.1002/geot.202200032
https://doi.org/10.1016/j.autcon.2021.103701
https://doi.org/10.1016/j.autcon.2022.104498
https://doi.org/10.1016/j.autcon.2022.104498
https://doi.org/10.3390/s22218503
https://doi.org/10.3390/s22218503
https://doi.org/10.1016/j.undsp.2022.01.005
https://doi.org/10.1016/j.undsp.2022.01.005
https://doi.org/10.1016/j.autcon.2022.104369
https://doi.org/10.1016/j.autcon.2022.104369
https://doi.org/10.1109/ROBIO49542.2019.8961494
https://doi.org/10.1109/ROBIO49542.2019.8961494
https://doi.org/10.1016/j.tust.2019.04.010
https://doi.org/10.1016/j.tust.2019.04.010
https://doi.org/10.1016/j.autcon.2021.103779
https://doi.org/10.1016/j.tust.2023.105290
https://doi.org/10.1016/j.tust.2023.105151
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0085
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0085
https://arxiv.org/abs/1909.03602
https://doi.org/10.48550/arXiv.1909.03602
https://doi.org/10.48550/arXiv.1909.03602
https://arxiv.org/pdf/2303.12712.pdf?utm_source=webtekno
https://arxiv.org/pdf/2303.12712.pdf?utm_source=webtekno
https://arxiv.org/abs/1711.09602
https://doi.org/10.48550/arXiv.1711.09602
https://doi.org/10.1109/ACCESS.2018.2881964
http://arxiv.org/pdf/1707.06347v2
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1801.01290
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0160
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0160

Automation in Construction 165 (2024) 105505

18

[33] 1, Hard Rock Tunnel Boring, Fakultet for ingeniørvitenskap og teknologi,
Trondheim. https://folk.ntnu.no/pdj/bruland%201998/, 1998 (accessed 20
December 2023).

[34] A. Delisio, J. Zhao, A new model for TBM performance prediction in blocky rock
conditions, Tunn. Undergr. Space Technol. 43 (2014) 440–452, https://doi.org/
10.1016/j.tust.2014.06.004.

[35] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
W. Zaremba, OpenAI Gym, 2016, https://doi.org/10.48550/arXiv.1606.01540.

[36] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dormann, Stable-
Baselines3: reliable reinforcement learning implementations, J. Mach. Learn. Res.
22 (2021) 12348–12355. http://jmlr.org/papers/v22/20-1364.html (accessed 20
December 2023).

[37] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna, in: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage AK USA, ACM, 2019, pp. 2623–2631. New York, NY, USA.
ISBN: 9781450362016, https://doi.org/10.1145/3292500.3330701.

[38] T. Eimer, M. Lindauer, R. Raileanu, Hyperparameters in Reinforcement Learning
and How To Tune Them, arXiv preprint, arXiv:2306.01324, 2023, https://doi.org/
10.48550/arXiv.2306.01324.

[39] J.K.H. Franke, G. Köhler, A. Biedenkapp, F. Hutter, Sample-Efficient Automated
Deep Reinforcement Learning, 2021, https://doi.org/10.48550/arXiv.2009.01555.

[40] L. van der Maaten, G. Hinton, Visualizing Data using t-SNE, J. Mach. Learn. Res. 9
(2008), pp. 2579–2605. https://jmlr.org/papers/volume9/vandermaaten08a/
vandermaaten08a.pdf (accessed 20 December 2023).

[41] L. McInnes, J. Healy, J. Melville, UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. doi: 10.48550/arXiv.1802.03426.

[42] M. Wattenberg, F. Viégas, I. Johnson, How to use t-SNE effectively, Distill (2016),
https://doi.org/10.23915/distill.00002. http://distill.pub/2016/misread-tsne.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare,
A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533, https://doi.org/10.1038/nature14236.

[44] Achiam Joshua, Spinning Up in Deep Reinforcement Learning. https://spinningup.
openai.com/en/latest/user/introduction.html, 2018 (accessed 13 July 2023).

[45] Joblib Development Team, Joblib: running Python functions as pipeline jobs.
https://joblib.readthedocs.io/, 2020.

[46] Omry Yadan, Hydra - a Framework for Elegantly Configuring Complex
Applications. https://github.com/facebookresearch/hydra, 2019.

[47] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S.A. Hong, A. Konwinski,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, Others, accelerating the machine
learning lifecycle with MLflow, IEEE Data Eng. Bull. 41 (2018) 39–45.

T.F. Hansen et al.

https://folk.ntnu.no/pdj/bruland%201998/
https://doi.org/10.1016/j.tust.2014.06.004
https://doi.org/10.1016/j.tust.2014.06.004
https://doi.org/10.48550/arXiv.1606.01540
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1145/3292500.3330701
https://arxiv.org/abs/2306.01324
https://doi.org/10.48550/arXiv.2306.01324
https://doi.org/10.48550/arXiv.2306.01324
https://doi.org/10.48550/arXiv.2009.01555
https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.23915/distill.00002. http://distill.pub/2016/misread-tsne
https://doi.org/10.1038/nature14236
https://spinningup.openai.com/en/latest/user/introduction.html
https://spinningup.openai.com/en/latest/user/introduction.html
https://joblib.readthedocs.io/
https://github.com/facebookresearch/hydra
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0225
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0225
http://refhub.elsevier.com/S0926-5805(24)00241-3/rf0225

	Towards reinforcement learning - driven TBM cutter changing policies
	1 Motivation
	2 TBM cutter changing – Current best practice
	3 TunnRL-CC setup
	3.1 Excavation and cutter changing simulation
	3.2 Agent

	4 Results
	4.1 Reached performance
	4.2 Agent behavior at maximum performance
	4.3 Overall cutter changing policy analyses

	5 Discussion
	6 Conclusions
	7 Outlook
	Research data
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Extended technical description of parameter optimization for different agents
	Appendix B Tables with additional information
	References

