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Abstract The use of machine learning models for landslide 
susceptibility mapping is widespread but limited to spatial 
prediction. The potential of employing these techniques in 
spatiotemporal landslide forecasting remains largely unexplored. To 
address this gap, this study introduces an innovative dynamic (i.e., 
space–time-dependent) application of the random forest algorithm 
for evaluating landslide hazard (i.e., spatiotemporal probability 
of landslide occurrence). An area in Norway has been chosen 
as the case study because of the availability of a comprehensive, 
spatially, and temporally explicit rainfall-induced landslide 
inventory. The applied methodology is based on the inclusion of 
dynamic variables, such as cumulative rainfall, snowmelt, and their 
seasonal variability, as model inputs, together with traditional static 
parameters such as lithology and morphologic attributes. In this 
study, the variables’ importance was assessed and used to interpret 
the model decisions and to verify that they align with the physical 
mechanism responsible for landslide triggering. The algorithm, 
once trained and tested against landslide and non-landslide data 
sampled over space and time, produced a model predictor that 
was subsequently applied to the entire study area at different 
times: before, during, and after specific landslide events. For each 
selected day, a specific and space–time-dependent landslide hazard 
map was generated, then validated against field data. This study 
overcomes the traditional static applications of machine learning 
and demonstrates the applicability of a novel model aimed at 
spatiotemporal landslide probability assessment, with perspectives 
of applications to early warning systems.

Keywords Landslides · Spatiotemporal prediction · Landslide 
hazard maps · Warning · Machine learning · Random forest

Introduction
Machine learning (ML) is a subset of artificial intelligence that 
focuses on developing algorithms that enable computers to learn 
from data, recognize patterns, and make decisions or predictions 
based on that learned information (Mitchell 1997; Bishop and  
Nasrabadi 2006; Hastie et al. 2001). It has gained popularity in 
various applications, including geological hazard, in particular for 
assessing landslide susceptibility maps (LSMs) (Catani et al. 2013; 
Reichenbach et al. 2018; Crawford et al. 2021; Tehrani et al. 2022; 
Merghadi et al., 2020; Pham et al. 2016).

The physical mechanism of landslide triggering is very complex 
and influenced by several geological, hydrological, climatic, and 

anthropogenic factors. Physically based models simulate the slope 
failure mechanism through rigorous mathematical equations but 
face difficulties in handling the spatial variability of geotechnical 
and hydrogeological soil properties over large areas, remaining 
applicable only at the slope scale (Vannocci et al. 2022; Alvioli and 
Baum 2016; Tran et al., 2018; Corominas et al. 2014). In contrast, 
most Landslide Early Warning Systems (LEWSs) are based on 
rainfall thresholds (Guzzetti et al. 2020), which are defined as a 
rainfall value beyond which landslides are expected to occur 
(Guzzetti et al. 2008; Segoni et al. 2018a; Piciullo et al. 2018). The 
strength of rainfall thresholds lies in their simplicity; in fact, they 
are typically based only on a single parameter, rainfall. Although 
physically based approaches are more accurate, rainfall thresholds 
are fast and sufficiently accurate for regional-scale predictions 
(Piciullo et al. 2018) and can easily be understood and implemented 
for operational warning purposes (Nocentini et al. 2023a). Among 
statistical models, ML algorithms can unravel the complexities 
behind landslide triggering over large areas by using vast datasets 
involving geological, geomorphological, meteorological, and 
other relevant variables. They can identify patterns, interplaying 
relationships, and non-linear trends among the data that escape 
traditional empirical models, such as rainfall thresholds (Wang 
et al. 2023). The ability of ML to process extensive data and discern 
intricate interactions has brought a paradigm shift in the field of 
landslide analysis (Reichenbach et al. 2018; Tehrani et al. 2022). 
Another advantage of the most sophisticated ML techniques is 
the possibility of estimating the importance that an input variable 
has in producing the model outcome. In this framework, there are 
various indices to estimate the variables’ importance, such as the 
out-of-bag error (OOBE) and partial dependence plots (PDPs) 
(Friedman 2001). These indices are useful for exploring the logic 
of the algorithm and verifying its reliability (Nocentini et al. 2023b).

LSMs express only where landslides are likely to occur without 
considering the probability of occurrence over time (Fell et al. 
2008). The extension of the ML application framework toward 
dynamic (i.e., space–time-dependent) predictions remains largely 
unexplored and limited to relatively few preliminary studies 
(Tehrani et al. 2022; Nocentini et al. 2023b; Mondini et al. 2023). 
Some attempts have been carried out to combine LSMs with rainfall 
thresholds to develop a hazard matrix, enabling the spatial and 
temporal definition of landslide occurrence (Segoni et al. 2018b; 
Park et al. 2019; Pecoraro and Calvello 2021; Palau et al. 2022). 
Other authors have applied various ML models for a single rainfall 
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event-based (Ng et al. 2021; Liu et al. 2021) or single earthquake 
event-based (Pyakurel et al. 2021; Dahal and Lombardo 2023) 
landslide inventory, using the associated dynamic variables, to 
backanalyze such events. An innovative methodology for the 
dynamic application of the Artificial Neural Networks algorithm 
was presented by Distefano et al. (2022). This approach aims to 
automatically identify intensity-duration rainfall thresholds by 
feeding the model with a spatially and temporally explicit landslide 
inventory (a landslide dataset in which the location and time of 
occurrence of each landslide are known). Nocentini et al. (2023b) 
also proposed an innovative approach for the dynamic random 
forest (RF) model run. The authors sampled landslide and non-
landslide events over time and space and used static and dynamic 
variables (e.g., total rainfall over increasing time intervals) to feed 
the model. They identified short and intense rainfalls, and their 
seasonal variability, as the most influential parameters in triggering 
landslides. Similarly, Steger et al. (2023), using the generalized 
additive mixed model, concluded that the seasonal variability of 
rainfall and vegetation plays a crucial role in triggering landslides. 
To the best of our knowledge, only a few authors have trained ML 
models incorporating dynamic parameters to generate Landslide 
Hazard Maps (LHMs). These maps indicate the probability of 
landslide occurrence within a specific period of time and within 
a given area (Varnes and IAEG 1984). For instance, Stanley et al. 
(2021) selected non-landslide cells over both space and time, 
enabling the integration of snow water equivalent and soil moisture 
content data as dynamic input parameters for an eXtreme Gradient 
Boosting model, mapping the landslide hazard on a global scale. 
Li et al. (2022) followed a similar approach, focusing on analyzing 
the influence of dynamic input parameters (cumulative rainfall 
and vegetation indexes) on landslide triggering. These works are 
innovative breakthroughs compared to static LSMs and represent 
a promising starting point toward the objective of a real-time ML 
application for spatiotemporal landslide forecasting.

This study introduces an innovative and dynamic approach 
for generating LHMs using a random forest algorithm within 
MATLAB software code (MathWorks version R2023a, TreeBagger 
object of Statistics and Machine Learning Toolbox™). The study 
area encompasses the locality of Kvam in Norway, which experi-
enced two major rainfall events in 2011 and 2013, resulting in more 
than 100 landslides (Schilirò et al. 2021; Liu et al. 2021). Following 
the methodology proposed by Nocentini et al. (2023b), the model 
was trained and tested using a spatially and temporally explicit 
landslide inventory including different time intervals of cumula-
tive rainfall and snowmelt as dynamic factors. The ability of the 
algorithm in simulating the landslide triggering mechanism was 
verified by analyzing the variables’ importance estimates through 
OOBE and PDPs. This study aims to delineate a procedure for the 
dynamic application of the RF model to generate LHMs easily 
implementable in a LEWS for real-time spatiotemporal landslide 
forecasting.

Study area
The study area occupies most of the Gudbrandsdalen Valley and 
includes the municipalities of Nord-Fron, Sel and Sor-Fron (Inn-
landet County, southeastern Norway), for a total of 2800  km2. The 
town of Kvam is situated at the junction between Gudbrandsdalen 
Valley and Veikledalen Valley (Fig. 1a). In 2011 and 2013, Kvam 

experienced hundreds of landslides triggered by extreme precipi-
tation (Heyerdahl and Høydal 2017; Solheim et al. 2022) (Fig. 1b). 
In particular, a rainfall event on 10/06/2011 with a daily amount of 
about 80 mm triggered several channelized debris flows, causing 
damages estimating in 100 million $. On the 23/05/2013, a rainfall 
event with about 87 mm of daily amount caused several shallow 
landslides and an estimated damage of about 170 million $ (Schilirò 
et al. 2021; Liu et al. 2021).

The area is covered by 80% of forests and 6% of agricultural 
lands, while anthropic lands, water bodies and bare rocks account 
for the remaining 14%. Gudbrandsdalen is a long U-shaped gla-
cier valley incised by the Gudbrandsdalslågen River during the 
last glaciation throughout the Quaternary (Johnsen 2010). The 
valley is characterized by steep slopes and a floor mantled by gla-
ciofluvial deposits (or till), locally covered by Holocene fluvial 
deposits (Letten and Blikra 2007), affected by numerous small 
gullies and erosion tracts that frequently evolve into landslides 
(Oguz et al. 2020). Kvam is built on a large alluvial fan at the head 
of Veikledalen. The bedrock is composed of metamorphic rocks, 
mainly amphibolite and green or gray shists (Ramberg et al., 2008; 
Slagstad et al. 2011).

The area has a subarctic climate with cold winters (minimum 
temperature about -20 °C) and higher temperatures during summers 
(maximum temperature about 20 °C) (Hanssen-Bauer et al. 2017). In 
Kvam, the annual precipitation amounts to around 500 mm, with 
approximately 40% of it falling as snow (Liu et al. 2021).

Landslide inventory
An initial landslide database was assembled by NGI (Norwegian 
Geotechnical Institute) conducting on-site surveys and using high-
resolution aerial orthophotos captured in the weeks following the 
events on 10/06/2011, and 23/05/2013. Consequently, the database 
provides the exact dates and locations of each landslide. These 
events were triggered by the infiltration of intense, short-duration 
rainfall, resulting in the immediate erosion of unconsolidated glacial 
deposits and in the triggering of several debris flows, which remained 
confined into existing tributary rivers and streams (Heyerdahl and 
Høydal 2017; Liu et al. 2021; Schilirò et al. 2021).

The landslides database was extended by adding historical land-
slide data from Norwegian National Landslide Inventory (NNLI) 
(https:// temak art. nve. no/ tema/ skred hende lser, last accessed on 10 
September 2022). NNLI contains a total of more than 65,000 mass 
movements reported in Norway since 1959, including information 
about the uncertainties related to the date and location of each 
event (Krøgli et al. 2018; Herrera et al. 2018). To meet the levels of 
the spatial and temporal resolution of the explanatory variables (see 
the “Input variables” section), a filtering process was implemented 
to exclude landslide events with a spatial and temporal uncertainty 
higher than 1000 m and 1 day, respectively. NNLI includes various 
types of mass movements (rock falls, rock slides, snow avalanches, 
and debris slides are the most frequent), and among them, only 
rainfall-induced landslides were selected.

A total of 373 landslides were identified in the period 2010–2022 
(Fig. 1a), of these 166 from the NNLI and 207 from the NGI datasets; 
144 of these occurred on 10/06/2011 and 69 on 23/05/2013. The col-
lected landslide inventory exhibits evident spatial and temporal bias 
because most of the landslides that it contains occurred during the 
two major events (June 2011 and May 2013) and are located mainly 
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in the same area (Kvam catchment area). Training a ML algorithm 
with such biased data could potentially affect the results, as it would 
assign greater importance to the rainfall events that occurred on 
those specific days and in that specific area. From a physical per-
spective, it is also justifiable for the model to prioritize these intense 
and spatially concentrated rainfall events that triggered hundreds 
of landslides in an already highly susceptible area. Consequently, 
to comprehensively analyze each case, two tests were conducted:

• Using the complete landslide inventory, thus considering land-
slides that occurred on the same day and in the same area as 
separate events (single landslides, SL), resulted in a total of 373 
landslides;

• Grouping the landslide events that occurred on the same day 
and within the same 1 km pixel; thereby considering the Land-
slide Events (LE—a group of landslides occurred during the 
same rainfall event (Calvello and Piciullo 2016)), resulting in a 
total of 164 events.

Methods
The RF algorithm, a nonparametric and multivariate ML method pro-
posed by Breiman (2001), has been extensively applied to evaluate land-
slide susceptibility (Brenning 2005; Catani et al. 2013; Goetz et al. 2015). Its 
popularity is attributed to several advantages. Specifically, it can handle 
both numerical and categorical data without requiring assumptions 
regarding their statistical distribution. Additionally, RF allows to conduct 

an analysis of the input variables’ importance through OOBE and PDPs. 
RF requires dividing the input database into two subsets: the training 
dataset, which is used to train the algorithm, developing the model pre-
dictor; and the test dataset, for which the predictor is applied to evaluate 
its performance. The conventional procedure for defining traditional 
LSMs involves sampling input variables only over the space, from both 
landslide and non-landslide points. The resulting map represents the 
susceptibility to landslide, without temporal information, except for the 
assumption that its validity can be extended in the future as long as the 
input variables remain constant over time. Dynamic parameters, such as 
cumulative rainfall, cannot be directly used as model input parameters, 
because of their incompatibility with such static approach.

In this Chapter, the procedures for the dynamic application of the 
RF model (the “Dynamic random forest model” section), developed in 
three subsequent steps (the “Training and testing phases,” “Variables’ 
importance analysis,” and “Dynamic random forest application” sec-
tions), and the method for validating the resulting LHMs (the “Valida-
tion procedure (DTVT)” section) are presented. Figure 2 provides a 
schematic summary of all the stages involved in the proposed method.

Dynamic random forest model

Training and testing phases

Building on the previous work of Nocentini et al. (2023b), the 
approach used in this study requires a spatially and temporally 

Fig. 1  Framing of the study area: a elevation, with NNLI (blue) and NGI inventory (red) overlaid, and a red box indicating the Kvam catchment 
area magnified in b, where 10/06/2011 (light blue) and 23/05/2013 (orange) landslide events are shown
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explicit landslide inventory and involves defining non-landslide 
events in terms of location and date. Non-landslide events were 
identified through a random sampling of landslide-free pixels over 
both space and time (Fig. 2a). This method allows for the inclusion 
of dynamic parameters among the input variables to achieve spa-
tiotemporal predictions.

To investigate the sensitivity of the results, the model was trained 
using different configurations based on the augmentation of non-
landslide events (i.e., by randomly sampling an increasing number 
of non-landslide events over space and time). Therefore, we built 
a balanced dataset (1:1 ratio between landslide and non-landslide 
events) and several imbalanced datasets, with the number of non-
landslide events equals to 3, 5, 7, 10, 20, 50, and 100 times the number 
of landslide events. The symbology × 1, × 3, × 5, × 7, × 10, × 20, × 50, 
and × 100 indicates the degree of database imbalance, represent-
ing the number of non-landslide events as a multiple of landslide 
events (Fig. 2b).

The dynamic RF model training phase was conducted by build-
ing 300 trees, as preliminary tests showed that this dimension 
ensures stable OOBE outputs. Each model configuration was run 
seven times to observe the variability of the results and to char-
acterize the mean estimated variables’ importance and its range 
of variation.

Variables’ importance analysis
RF generates Bayesian trees by randomly sampling observations 
from the training dataset. This procedure consists in excluding one 
variable, called Out-Of-Bag (OOB) variable. Then, other trees are 
built using the same procedure, but randomly permuting the OOB 
variable. Therefore, the model calculates the OOBE for each tree, 
which expresses the potential error that would be committed if a 
given OOB variable would be excluded from the model (Catani et al. 
2013). This technique is internally used by the RF algorithm to select 
the trees with the highest performance (lower OOBE). In our model 

implementation, OOBE values are used to assess the importance of 
each variable, to estimate their predictive power, and to rank them 
based on their influence in the landslides triggering process (Liaw 
and Wiener 2002; Catani et al. 2013; Nocentini et al. 2023b).

PDPs are another powerful tool implemented in this study. 
PDPs are graphs depicting how a value or a class of values of a 
selected variable influences the model outcome. For instance, they 
can highlight direct or inverse correlations between the values of 
the explanatory variable and landslide probability, or discern more 
complex patterns (Friedman 2001; Friedman and Popescu 2008); 
thus, constituting a valuable tool for interpreting the results and 
determining whether the empirical outcomes of the algorithm are 
coherent with the current knowledge regarding the landslides trig-
gering processes (Nocentini et al. 2023b). The partial dependence is 
calculated by measuring the change in predictions made by vary-
ing the values of a selected feature while keeping other features 
constant. We used the PDPs in various ways to analyze how input 
parameters influence landslide triggering as the degree of database 
imbalance increases and to explore the interactions among vari-
ables and landslide occurrences.

Dynamic random forest application
To generate LHMs and to demonstrate the applicability of the 
proposed dynamic RF model for real-time landslides forecasting, 
the model predictor produced during the training phase was sub-
sequently applied across all pixels within the study area, but only 
for a specific date that occurred in the past. Specifically, this phase 
involves applying the logical reasoning learned by the model during 
the training phase to another dataset, called application dataset. This 
dataset includes observations sampled from all pixels, but concern-
ing the dynamic variables, these observations are exclusively related 
to the selected date. This application produces a landslide prediction 
value for each pixel, similar to LSMs, with the difference that, in this 
case, the prediction is only valid for that selected date. Hence, the 

Fig. 2  Workflow of the proposed methodology with schematic examples of a the method of identification of non-landslide events for 
dynamic model training and testing phases; b the definition of various datasets based on the number of non-landslide events to calibrate the 
degree of database imbalance; and c the output produced by dynamic RF model application
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resulting map indicates the spatiotemporal probability of landslide 
occurrence, namely LHM. The application was performed using the 
“predict” function on MATLAB, which provides the estimated poste-
rior probability relative to the application dataset, computed starting 
from the model predictor (further explanations about the function 
can be found on the website: https:// www. mathw orks. com/ help/ 
stats/ treeb agger. predi ct. html? searc hHigh light= predi ct% 20for% 
20tre ebagg er, last accessed on 21 March 2024).

In this study, we conducted a hindcast of the two major events 
that occurred on 10/06/2011 and 23/05/2013 (Fig. 2c). To evaluate 
the model performance in both critical and ordinary situations, 
the temporal domain of the simulation was extended from 3 days 
before to 3 days after the occurrence of these major events.

The results were a series of LHMs, each one valid for a spe-
cific day of analysis. This approach replicates the outcomes of a 
hypothetical nowcasting system that predicts landslide occurrence 
across the entire study area at daily time steps using dynamic and 
static input parameters.

Validation procedure (DTVT)

To validate the results, the procedure called DTVT (Double Thresh-
old Validation Tool—Bulzinetti et al. 2021) was used in this study. This 
tool allows to validate the raw results of landslide hazard models by 
reaggregating the pixel-based LHMs over wider territorial units (hence-
forth called Pixel Aggregation Units—PAUs), comparing them with a 
landslide inventory and computing skill scores. The method is based 
on a double criterion to define a PAU as unstable: (i) Failure Probabil-
ity Threshold (FPT): the probability above which a pixel is considered 
unstable; and (ii) Instability Diffusion Threshold (IDT): the percentage 
of unstable pixels that a PAU needs to justify the issuing of a warning.

In this study, the first-order catchments, extracted from the 
Norwegian national catchment database called REGINE (REGIster 
over NEdbørfelt i Norge—register of catchment areas in Norway) 
(https:// www. nve. no/ kart/ kartd ata/ vassd ragsd ata/ nedbo rfelt- 
regine/, last accessed on 10 September 2022) were used as PAUs. 
This choice is motivated by the possibility to partitioning the study 
area into hydro-geomorphological homogeneous polygons (Bell 
et al. 2014; Krøgli et al. 2018). Catchments with an area smaller than 
5  km2 were aggregated with adjacent polygons and only catchments 
fully within the study area and those containing landslides were 
employed. A total of 68 catchments were identified, ranging in size 
from a minimum of 5.20  km2 to a maximum of 72.45  km2.

FPT values between 0.5 and 0.8 and IDT values ranging from 1 to 
20% were tested, and the configuration that correctly predicted all 
landslides with the minimum number of FA for both the 2011 and 
2013 events was identified. In addition, this configuration allows to 
define a criterion for a territorial-based prediction output suitable 
for the implementation in a LEWS.

Input variables

Dynamic factors
Cumulative rainfall (CR_x [mm])

In the literature, a general agreement exists regarding the 
identification of two main landslides triggering factors: (i) 

short-duration and high-intensity rainfalls, resulting in rapid 
infiltration of water into superficial and permeable soil layers, which 
rapidly increases water pressure and causes the triggering of shallow 
landslides; (ii) long-duration but low-intensity rainfalls, which are 
usually associated with the (re)activation of deep-seated landslides, 
which usually require longer infiltration times (Pereira et al. 2012; 
Giannecchini et al. 2012; Nocentini et al. 2023b). In this work, we 
defined 30 variables CR_x as the total amount of rain fallen in the 
past x days, where x ranges from 1 to 30, to account for the effect of 
short and intense rainfalls, mild but very prolonged rainfalls, and 
any possible intermediate conditions.

Rainfall data were obtained from the catalog provided by the Nor-
wegian Meteorological Institute (MET Norway) for the period between 
2010 and 2022 and with a spatial resolution of 1 km. The catalog con-
sists of various sections, including the archive called “seNorge_2018” 
from which the daily rainfall maps were downloaded (https:// thred 
ds. met. no/ thred ds/ catal og/ senor ge/ seNor ge_ 2018/ catal og. html, last 
accessed on 10 September 2022) (Lussana et al. 2018, 2019).

Cumulative snowmelt (CS_x [mm])
Similar to rainfall, the infiltration of snowmelt into the soil increases 
soil water content, thereby reducing shear strength and potentially 
triggering landslides. However, compared to rainfall, the snow melt-
ing process is generally slower and delivers to the soil an equiva-
lent amount of water in longer times and at lower rates (Harr 1981; 
Ishikawa et al. 2015, 2016; Ishikawa and Miura 2011; Fu et al., 2018; 
Camera et al. 2021). Only heat waves can cause a rapid snow melting, 
resulting in a water supply comparable to that provided by a short-
duration and intense rainfall (Gariano and Guzzetti 2016; Hanssen-
Bauer et al. 2017; Dyrrdal et al., 2021). In this study, snowmelt (CS_x) 
was computed using time intervals ranging from 1 to 30 days (x 
corresponds to the specific interval selected). The dataset was pro-
vided by MET Norway for the period 2010–2022. Specifically, the 
Snow Water Equivalent (SWE) maps, available in the archive named 
“seNorge_snow,” were extracted (https:// thred ds. met. no/ thred ds/ 
catal og/ senor ge/ seNor ge_ snow/ catal og. html, last accessed on 10 
September 2022) (Saloranta, 2014, 2016). SWE represents the amount 
of snowfall on the ground converted into millimeters of water. Con-
sidering that a decrease in SWE between two consecutive days is to 
be interpreted as snow melting, the daily cumulative snowmelt was 
derived from the difference in SWE between two consecutive days. 
In cases where the difference is positive, indicating snowfall, the 
snowmelt value was set equal to zero.

The month of observation (Month [-])
The variable Month indicates the month of the year in which an 
observation (both landslide and non-landslide) was sampled. 
Therefore, it is a categorical variable containing 12 classes, one for 
each month, from January to December. It was used as an empiri-
cal proxy to capture the seasonal variability of rainfall, snowmelt, 
temperature, and vegetation; which in turn influence the humidity 
of the soil (Nocentini et al. 2023b). In fact, the seasonal variability 
of soil moisture is considered one of the most influential factors in 
triggering landslides (Gariano and Guzzetti 2016; Rosi et al. 2021; 
Piciullo et al. 2022), and it is widely recognized that an ordinary 
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amount of water (from rainfall or snowmelt) can more likely trigger 
landslides if it occurs when the soil is already saturated, compared 
to a dry soil (Gariano and Guzzetti 2016; Nocentini et al. 2023b).

Static factor

A Landslide Susceptibility Index (LSI) was chosen as a static input 
variable to summarize the effect of the main static predisposing 
factors involved in the landslides triggering process. A basic LSI was 
obtained using a traditional static application of the RF algorithm, 
selecting as input variables only the parameters most commonly 
used in literature (Reichenbach et al. 2018; Segoni et al. 2021; Lima 
et al. 2022; Liu et al. 2021) and those used in previous works in the 
same area (Liu et al. 2021), namely: slope, aspect, total curvature, 
flow accumulation, distance from the stream network, lithology (5 
classes: amphibolite facies, granulite facies, green schist facies, mag-
matic intrusions, subgreen schist facies) and land cover (6 classes: 
forests and seminatural areas, wetlands, agricultural areas, artificial 
surfaces, glacier and perpetual snow, bare rocks). Additionally, as 
previously proposed by Luti et al. (2020), a random parameter with 
values between 0 and 1 was also used in a preliminary version of 
LSI, to detect if the model correctly recognizes it as influential and 
to check if some of the parameters have an explanatory power close 
to a randomly generated field of values. After confirming that the 
model recognizes the random variable as irrelevant to landslide 
triggering, this variable was discarded.

The resulting LSI was used as the only static factor in the sub-
sequent dynamic assessment. This brings some advantages, which 
include: the reduction of the number of input parameters and 
consequently of the computational times (which, in perspective, 
would be a relevant issue for operational applications), and it helps 
to focus the analyses and interpretation of the results on the role 
played by the different dynamic factors.

LSI was created using 100m × 100m pixels as basic computa-
tion units. The landslides from the original NNLI with a spatial 
uncertainty higher than 100m were discarded; instead, since the 
susceptibility mapping is based on a spatial assessment without 
temporal information, landslides with inaccurate or uncertain tem-
poral definition were kept. In addition, the whole NGI landslide 
inventory is considered, due to the very high spatial resolution. A 
total of 453 landslides were collected for the study area from 1959 
to 2022 (246 from NNLI and 207 from NGI). Since most landslides 
from the NNLI are geolocated as points representing the location of 
the impact on human infrastructures, the most probable landslide 
bodies were recreated by using the same methodology described 
in Nocentini et al. (2023b). Applying the Watershed tool in Arc-
GIS PRO, the polygons representing the catchment areas upslope 
of each landslide point were identified; then clipped with a 200 m 
buffer. The resulting polygons can be considered a good approxi-
mation of the unstable areas, including the pixels upstream the 
landslide points.

LSI was generated by applying the RF algorithm with 100 
decision trees, after testing larger numbers and confirming that 

Fig. 3  a Map of LSI. b Magnification of LSI for the Kvam catchment area
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they have no significant impact on model results. Four hundred 
fifty-three landslide polygons, encompassing a total of 18,826 
pixels, and an equal number of randomly selected non-landslide 
pixels were used for model training and testing. The database was 
divided into two subsets: 70% for the training phase and 30% for 
the testing phase, both subsets having 50% of landslides and 50% of 
non-landslides points. The resulting predictor was then applied to 
all pixels in the study area to build the susceptibility map. Figure 3 
shows LSI classified for graphic representation only using the 
natural breaks method (Jenks 1967). The resulting map achieved 
an AUC (Area Under the Receiver Operating Characteristic (ROC) 
Curve) value of 0.88, indicating high model performance. Among 
the static variables, the most important were slope, aspect, distance 
from the stream network, and land cover.

Results

Estimation of variables’ importance
Due to the exceptional number of input parameters (63 in total, 
including the 30 cumulative rainfalls, the 30 cumulative snowmelts, 
LSI, Month, and a control parameter with random values between 
0 and 1), the model was initially implemented in two separate pre-
liminary phases. The first phase involved only cumulative rainfall, 
and the second phase only cumulative snowmelt. Both phases 
included Month, LSI, and the random variable and were tested on 
both SL- and LE-balanced databases. These tests were conducted 
to identify the periods of cumulation with the higher importance. 
The obtained histograms of OOB variables’ importance estimates 
are presented in Fig. 4. The histograms illustrate the estimated 

importance of each variable, as averaged across seven model runs, 
with the maximum and minimum values identified by the whiskers.

The short-duration cumulative rainfalls show a greater impor-
tance compared to other rainfall parameters, with the highest peak 
for the daily rainfall. Conversely, longer cumulative periods show 
a lower influence in triggering the inventoried landslides. Addi-
tionally, the Month variable and LSI exhibit high importance when 
using both SL and LE database. Long-duration cumulative snow-
melt displays a greater influence than the short-duration ones, 
albeit slightly.

For the subsequent training, test, and application phases of the 
dynamic RF model, it was decided to employ the most important 
variables, namely Month, LSI, CR_1, and CS_30. Additionally, other 
cumulative variables were included at weekly intervals to further 
analyze their contribution in triggering landslides across differ-
ent degrees of database imbalance and through PDPs. Specifically, 
CR_7, CR_14, CR_21, and CR_30 were added to represent longer 
cumulative rainfall periods, while only CS_14 was included to rep-
resent medium-duration cumulative snowmelt, as short-duration 
snow melting demonstrates very low importance in triggering 
landslides. The random variable was excluded because the model 
recognizes it as insignificant for landslide prediction.

Figure 5 displays the average estimates of variables’ impor-
tance obtained for the dynamic RF model for different degrees of 
database imbalance. These plots confirmed CR_1 as the most sig-
nificant cumulative rainfall for each configuration, as expected, 
with an importance about double than the other cumulative rain-
falls. The Month variable registers a high level of importance 
and LSI emerges as the most impactful variable in each case. 

Fig. 4  OOB variables’ importance estimates performed as preliminary analysis, separating cumulative rainfall (CR) to cumulative snowmelt 
(CS), for both SL- and LE-balanced databases. The variables chosen for the subsequent dynamic RF model runs are highlighted in orange
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The effect of snowmelt on triggering the inventoried landslides 
appears to be relatively minor, and its importance is similar 
to those of antecedent rainfall, both using SL or LE database. 
Increasing the degree of imbalance does not significantly alter 
the correlation among variables, and the ranking of the variables’ 
importance remain essentially the same.

Partial dependence plots

Figure 6 and Fig. 7 show the PDPs of the selected variables for dif-
ferent degrees of database imbalance, averaged for the seven model 
runs, using SL or LE database respectively. The figures highlight that 
the importance of the selected variables decreases as the degree 
of imbalance increases. This is an expected outcome, which is not 

specifically related to the model, but it is an intrinsic characteris-
tic of PDPs: they represent the marginal effect of a given value of a 
given parameter on the model prediction, averaged over the total 
number of instances in the training dataset (see Molnar (2020) for 
further mathematical explanations). As a consequence, the relative 
score of each variable decreases if the degree of imbalance increases, 
because the total number of instances in the dataset increases accord-
ingly (Friedman 2001; Molnar 2020; Nocentini et al. 2023b). For our 
purposes, when observing a PDP of a given variable, the graph is 
interpreted in relative terms, without focusing on the scores reported 
on the y axis and considering the shape depicted by the curves over 
different degrees of imbalance. Conversely, when comparing plots 
of different variables, emphasis is placed on the difference in impor-
tance estimate among curves of the same degree of imbalance.

Fig. 5  Variability of the average OOB variables’ importance estimates for the selected variables under different degrees of database imbal-
ance; obtained using a SL database and b LE database

Fig. 6  Mean partial dependence of the selected variables for different degrees of database imbalance by using a SL database
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Looking at Figs. 6 and Fig. 7, and comparing PDPs among differ-
ent variables, CR_1 shows a growing trend, both in case of SL and 
LE. This outcome aligns with the physical mechanism of shallow 
landslide triggering, suggesting a higher influence for more intense 
rainfalls, up to a threshold value beyond which landslides are 
expected to occur. A similar trend, albeit less marked, was observed 
for CR_7, CR_14, and CR_21, showing that antecedent rainfall played 
a minor but yet noticeable role in landslides triggering. Again, this 
outcome was considered a further proof of the model adherence 
to the physics of the triggering mechanism, as shallow landslides 
are typically triggered by short and intense rainfall, but antecedent 
rainfall may play a not negligible predisposing role (Ponziani et al. 
2012; Kim et al. 2021).

For CR_30, CS_14 and CS_30, PDPs are flat, indicating that 
these parameters do not play a key role in triggering the inven-
toried landslides. Indeed, several studies relate their influence in 
triggering shallow landslides on the permeability of soils, with 
less permeable soils more sensitive to the accumulation of water 
over extended periods (Glade et al. 2000). Therefore, it is plausible 
that the physical properties of the soil of this study area deter-
mine that the predisposing effect of cumulative rainfall and snow-
melt is almost completely lost over long period due to its draining 
capacity. The Month variable displays a complex behavior, with the 
main positive peaks of importance during May and June, two of 
the months with the highest amount of rainfall and snowmelt (see 
Fig. 15). LSI exhibits a monotonous rising trend using SL, where 
the peak of importance is observed for LSI values tending toward 
1. This is obviously in accordance with physical evidence, as this 
static variable, even if it does not bear temporal information, helps 
the dynamic model to detect the places where landslides should 
be expected. However, the PDP obtained for LSI using LE shows an 
anomalous relationship: the peak is reached for LSI values equal 
to 0.6, then the relationship remains flat, or it decreases. This out-
come is probably an artifact due to the identification method of 
the LE database: all landslides that occurred on the same day and 

in the same 1 km pixel (spatial resolution of the meteorological 
data) were considered a single event and an average value of LSI 
was considered. This reduces the spatial accuracy of the dynamic 
model, leading to unexpected results.

Looking at different degrees of imbalance, there is a notice-
able change in trend for CR_1. Increasing the degree of database 
imbalance results in a clear shift of the peak of importance of CR_1 
toward more intense rainfall values. These findings align with the 
observations made by Nocentini et al. (2023b). This trend can be 
observed in greater detail through the normalization of PDPs. By 
converting partial dependence values into a 0–1 range, it becomes 
feasible to compare them across different degrees of imbalance 
within a plot of the same variable. Considering that PDPs high-
lighted the incoherence of LE results and the significance of ante-
cedent rainfall and snowmelt remains substantially flat, the nor-
malization focused only on CR_1, Month, and LSI and only on the 
SL database. Figure 8 shows the normalized partial dependence 
plots (nPDPs), where the normalized partial dependence values 
(xn) were obtained by applying the following equation:

where x, xmin, and xmax represent respectively the current, minimum, 
and maximum values of importance reported in the classic PDPs.

Looking at Fig. 8, CR_1 registers the greatest increase in impor-
tance (from 0 to 0.65) at 5mm of rainfall when using a balanced 
database. By increasing the number of non-landslide events seven 
times, the greatest increase is observed for about 20mm of rain-
fall (up to 0.75). With a further increase in the degree of imbal-
ance, PDPs largely remain consistent, but it becomes progressively 
evident that daily rainfalls lower than 20mm do not affect land-
slide triggering. Instead, once that 20mm’s threshold is crossed, 
the impact of CR_1 in triggering landslides rapidly increases. 
LSI also experiences a considerable change: as the number of 

x
n
=

(x − x
min

)

(x
max

− x
min

)

Fig. 7  Mean partial dependence of the selected variables for different degrees of database imbalance by using a LE database
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non-landslide events increases, the importance of LSI values less 
than 0.5 decreases. This change in nPDPs’ trend comes from the 
augmentation of non-landslide events: as the database imbalance 
grows, the model is fed with more data, which allows for a better 
representation of the real situation, where non-landslide instances 
are usually orders of magnitude more abundant than landslide 
instances. Consequently, the RF algorithm can obtain a better 
calibration, establishing a more suitable threshold to distinguish 
between ordinary and triggering rainfall events.

RF allows to generate the PDPs of interactions between two vari-
ables (iPDPs), which illustrates how they interact to affect model 
outcomes. The most important cumulative rainfall is CR_1, so it 
was decided to analyze its interactions with the other variables. The 
iPDPs obtained using the configurations × 1 (Fig. 9) and × 7 (Fig. 10) 
were taken as an example to illustrate the differences between bal-
anced and imbalanced database.

It results that low-intensity CR_1 (< 5mm) has always a mini-
mal impact on landslide triggering, regardless on the amount of 

antecedent rainfall. Conversely, higher CR_1 values consistently 
show a high importance, even with low antecedent rainfall. Simi-
lar results are obtained when CR_1 is combined with snowmelt. 
Instead, the influence of CR_1 varies with Month. During wet sea-
sons (May and June), even moderate daily rainfall has a signifi-
cant impact. Conversely, during dry seasons, the influence of CR_1 
decreases, even with heavy rainfall. LSI also controls the influence 
of CR_1: in low-susceptibility areas, an intense rainfall is less influ-
ential than where susceptibility is high. In addition, moving from 
the × 1 to × 7 configuration, a decrease in importance is observed 
for CR_1 values between 5 and 20mm, confirming the behavior 
already observed with the nPDPs as the number of non-landslide 
events increases.

Dynamic landslide probability mapping

Figure 11 shows the boxplots of the landslide probability values 
obtained through the procedure described in the “Dynamic random 

Fig. 8  nPDPs obtained for CR_1, Month, and LSI variables, for different degrees of SL database imbalance

Fig. 9  iPDPs between CR_1 and the other input variables used for the dynamic RF model run through a balanced database
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forest application” section, for 3 days before, on the exact day, and 3 
days after the major events of 2011 and 2013, for different degrees of 
imbalance. Each boxplot evaluates the dynamic change in the over-
all instability of the area and offers a preliminary assessment of the 
temporal component of the predictions provided by the dynamic 
RF model. The whiskers of the boxplots extend to the minimum 
and maximum values of the maps, while the boxes contain the data 

between the 25th and 75th percentile. The black lines within them 
correspond to the mean values.

The graphics demonstrate the high dynamicity of the model 
outputs. In fact, the simulations of 10/06/2011 and 23/05/2013, which 
experienced the major landslide events, produced mean probabil-
ity values greater than those of the other simulated events, with-
out landslides. This indicates the model’s positive response to the 

Fig. 10  iPDPs between CR_1 and the other input variables used for the dynamic RF model run through a 7 times imbalanced database

Fig. 11  Boxplot of the LHMs obtained for a 2011 event and SL database; b 2013 event and SL database; c 2011 event and LE database; and d 
2013 event and LE database
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dynamic input provided by meteorological variables, which are 
the only input data that vary on the three simulated dates. For the 
simulation conducted 3 days before, the maximum probability 
value remains below 0.5 using an imbalanced database from the 
degree × 7 onwards, as expected for an event without landslides. The 
LHMs obtained for 3 days before, always produces probability val-
ues lower than the ones obtained for the simulation 3 days after the 
major events. This result can be explained by the significant rainfall 
that occurred during the major events, which saturates the soil on 
slopes for days afterwards. By incorporating long-duration cumula-
tive rainfall, the model accounts for these conditions, resulting in 

higher probability values even days after a critical rainfall due to 
the persistence of saturated slopes. Using LE, the boxes of the major 
events remain below 0.5 for each degree of imbalance for both 2011 
and 2013. Therefore, the prediction based on LE again shows a lower 
effectiveness than SL.

By excessively increasing the degree of imbalance, the mean 
probability values decrease significantly. This is due to the mecha-
nism previously identified with the PDPs. A drastic increase in the 
number of non-landslide events causes an excessive raising of the 
thresholds used by the model to discriminate between stability and 
instability. This outcome could potentially reduce the predictive 

Fig. 12  LHMs of the 10/06/2011 event obtained with a SL-balanced database and b SL database imbalanced 7 times. In c is illustrated the 
probability reduction map obtained by the difference between the former and the latter map

Table 1  Performance of the pixel-based LHMs, calculated by setting a probability threshold equal to 0.5

Landslide 
inventory

Degree of 
imbalance

Performance 
indicators

07/06/2011 10/06/2011 13/06/2011 20/05/2013 23/05/2013 26/05/2013

SL  × 1 TP 0 115 0 0 63 0

FN 0 0 0 0 0 0

FP 39,866 279,088 141,198 21,136 279,140 29,572

TN 239,337 0 138,005 258,067 0 249,631

 × 7 TP 0 113 0 0 63 0

FN 0 2 0 0 0 0

FP 0 135,232 7006 0 86,163 215

TN 279,203 143,856 272,197 279,203 192,977 278,988

LE  × 1 TP 0 98 0 0 45 0

FN 0 17 0 0 18 0

FP 26,380 33,054 29,619 26,324 26,986 26,298

TN 252,823 246,034 249,584 252,879 252,157 252,905

 × 7 TP 0 91 0 0 14 0

FN 0 24 0 0 49 0

FP 1535 22,769 15,201 534 10,197 8559

TN 277,668 256,319 264,002 278,669 268,946 270,644
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capability of LHMs, because for higher thresholds, a higher number 
of FNs is expected.

The LHMs obtained for the 2011 event using either the balanced 
or the × 7 imbalanced SL database were taken as examples to high-
light the effects of increasing the degree of imbalance, and the 
probability reduction between the former and the latter is shown 
in Fig. 12. With the × 1 configuration, the probability is consist-
ently high throughout the study area, whereas with the × 7 con-
figuration, a more gradual variation in probability is observed. 
This trend is also more consistent with LSI (Fig. 3). In fact, the 
probability reduction map indicates a decrease in landslide prob-
ability of up to 40% in regions outside the Gudbrandsdalen Valley, 
which are landslide-free and exhibit very low susceptibility values. 
While inside the valley itself, where susceptibility is maximum, 
the probability values remain largely constant. Therefore, through 
an increase in database imbalance, a smaller number of FPs is 
expected due to the decrease in landslide triggering probability 
in areas without landslides.

Validation

Table 1 presents the performance of pixel-based LHMs in terms 
of True Positive (TP), True Negative (TN), False Positives (FP), 
and False Negative (FN), calculated by considering a probability 
threshold equal to 0.5. To illustrate the differences between a bal-
anced and an imbalanced database, the results from the × 1 and × 7 
configurations are taken as examples and presented herein. With a 
SL-balanced database, a high number of FPs was observed both 3 

days before and 3 days after the major events, which instead exhib-
ited the highest FPs counts with no TNs recorded, but also no FNs. 
The use of LE resulted in a substantial increase in FNs counts for 
both major events. In the case of an imbalanced SL database × 7, 
the number of FPs significantly decreased for each simulation, but 
there was also a slight increase in the number of FNs only for the 
10/06/2011 event (2 FNs), an increase that was more pronounced for 
both major events when using LE.

The optimal DTVT configuration that ensures zero FNs and 
minimizes the number of FPs for both the 10/06/2011 and 23/05/2013 
events was identified for FPT = 0.65, IDT = 5%, and the SL database 
imbalanced by a factor of 7. Table 2 illustrates the performance of 
the reaggregated maps obtained by applying DTVT using both a 
balanced and a × 7 imbalanced database.

Concerning the optimal DTVT configuration identified for SL, 
moving from a balanced to a × 7 imbalanced database, every landslide 
was still correctly predicted, and the number of FPs was reduced by 
24 in the case of the 2011 event and by 36 for the 2013 event. Instead, 
for simulations 3 days before and 3 days after the major events, the 
FPs were reduced to zero, and only TNs were recorded.

To visualize the dynamic outcomes of the model, Figs. 13 and 
Fig. 14 show the results of the hindcasts of the 2011 and the 2013 
events, respectively; in both cases the × 7 SL database was used. The 
maps generated 3 days before and 3 days after the major events 
exhibit a low landslide probability, with peak values of respectively 
0.49 and 0.61 for the 2011 event, and 0.46 and 0.50 for the 2013 
event, mainly concentrated around the Gudbrandsdalen Valley, 
where the susceptibility is very high. The validation phase of these 

Table 2  Performance of the reaggregated LHMs obtained by applying DTVT by setting FPT = 0.65 and IDT = 5%

Landslide 
inventory

Degree of 
imbalance

Performance 
indicators

07/06/2011 10/06/2011 13/06/2011 20/05/2013 23/05/2013 26/05/2013

SL  × 1 TP 0 14 0 0 10 0

FN 0 0 0 0 0 0

FP 24 54 45 0 53 14

TN 44 0 23 68 5 54

 × 7 TP 0 14 0 0 10 0

FN 0 0 0 0 0 0

FP 0 30 0 0 17 0

TN 68 24 68 68 41 68

LE  × 1 TP 0 10 0 0 7 0

FN 0 4 0 0 3 0

FP 23 23 33 1 26 20

TN 45 31 35 67 32 48

 × 7 TP 0 10 0 0 7 0

FN 0 4 0 0 3 0

FP 0 12 0 0 14 0

TN 68 42 68 68 44 68
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maps results in only TNs, as expected on days when less intense 
rainfall occurred, and no landslides were reported. The LHM for 
10/06/2011 shows a high landslide probability, particularly in the 
Gudbrandsdalen Valley, with a maximum of 0.76. However, the map 
also reveals areas with lower probability despite high daily rainfall. 
This discrepancy arises because these areas also exhibit a low LSI. 
Conversely, regions with high probability are characterized by both 
high daily rainfall and susceptibility, aligning with the iPDPs shown 
in Fig. 10. The related validation map recorded each PAU hit by 
landslides as TP, but 30 FPs were issued. For the event on 23/05/2013, 
the maximum probability value is 0.75, observed once again in the 
valley. The validation results in a 100% rate of correct predictions 
and 17 FPs, thus obtaining better results than for the 2011 event.

Moving from pixel-based to PAUs-based validation, the model 
performance improved, as the number of FNs resulted equal to 0 
for both events when using SL database imbalanced seven times.

Discussion
The variables’ importance results shows that daily cumulative rain-
fall is more important than antecedent rainfall and snowmelt; in 
line with what was expected for the inventoried landslides, mainly 
shallow landslides, that are primarily influenced by short-duration 
and intense rainfall. These results are also consistent with the inter-
pretations made by Heyerdahl and Høydal (2017), who observed 
that daily rainfall was the direct triggering factor for the 2011 and 
2013 events. However, antecedent snowmelt results in being more 
influential in triggering landslides compared to short-duration 
snowmelt, as expected, due to the lower soil water supply provided 
by daily snowmelt. The influence of long-duration cumulative 
snowmelt is also comparable to that of antecedent rainfall, which 
has similar infiltration rates.

Among the dynamic variables, the Month shows the highest 
importance, and the PDPs associate the months of May and June 

Fig. 13  Daily cumulative rainfall, pixel-based LHMs, and validation maps for each simulated event in June 2011
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with the greatest influence on landslide triggering. The occurrence 
of two exceptional events in June 2011 and May 2013 certainly has 
a significant impact on these results, considering the use of a data-
driven model (Steger et al. 2021), but the Month variable also shows 
a correlation with the seasonal variability of rainfall, snowmelt, 
and temperature. In fact, as shown in Fig. 15, in May and June, the 
degree of soil moisture is very high due to the coupling effect of 
snowmelt and rainfall. July and August are the rainiest months, but 
they are also the months with the highest temperatures. The com-
bined effects of abundant rainfall and high temperatures results in 
vegetation growth. The presence of healthy and lush vegetation in 
July and August has a stabilizing effect on the slopes, particularly 
by reducing soil moisture through evapotranspiration (Löbmann 
et al. 2020; Capobianco et al. 2021; Masi et al. 2021). Therefore, the 
use of the Month variable results an effective method to represent 
in an empirical way the soil moisture variability over seasons, in 

turn correlated to seasonal variability of snowmelt, rainfall, tem-
perature, and vegetation.

The variable that shows the highest importance is LSI, dem-
onstrating once again that the model can correctly simulate the 
physical mechanism of landslides triggering, as they mainly occur 
in slopes that, due to geological and geomorphological character-
istics, are already subject to this type of instability. Using the LE 
database, the partial dependency of LSI shows a decreasing trend 
(Fig. 7), thus assigning progressively lesser importance to suscepti-
bility values greater than 0.6. This anomalous behavior is not con-
sistent with the physical process investigated, as higher landslide 
probability is expected in areas with high susceptibility. The use of 
the LE database was aimed at the attempt to remove the bias con-
tained in the landslide inventory, but its use, in turn, introduces an 
incorrect interpretation of the LSI variable, due to the method of 
incorporating multiple landslide events, which forces sampling an 

Fig. 14  Daily cumulative rainfall, pixel-based LHMs, and validation maps for each simulated event in May 2013
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average LSI value. The use of PDPs confirmed this anomaly, thereby 
suggesting to exclude an approach based on LE database for further 
applications of the model.

Increasing the degree of database imbalance toward non-
landslide events contributes to better represent the real situation, 
in which non-landslide events occur more frequently than landslide 
events. Therefore, increasing the number of observations allows 
feeding the model with a more representative database of the actual 
rainfall frequency distribution. However, since incompleteness 
is one of the most critical issues of most landslide inventories, 
the possibility of unreported landslides should always take into 
account, as they could be wrongly identified as non-landslide 
events. Hence, this imbalance should be carefully evaluated in 
future applications. For these reasons, PDPs are very helpful for 
identifying the correct degree of database imbalance. In fact, an 
excessive increase in the number of non-landslide events tends to 
nullify the importance of certain classes of values, supporting only 
a close range of them. For example, 

 shows that a database imbalanced by a factor of 100 assigns very 
low importance to values of CR_1 below 20mm and assigns high 
importance (above 0.6) only to values greater than 40mm. Similarly, 
it almost nullifies the importance of LSI values lower than 0.9. In 
these cases, the contribution provided by some classes in producing 
the model’s predictions is lost, resulting in outcomes not consistent 
with the physical mechanism of landslide triggering.

The use of the proposed dynamic RF model application to 
hindcast past events shows promising results. The generated 
LHMs show clear patterns, which are consistent with the ground 
truth, both from a spatial and temporal perspective. Concerning 
the simulations performed before and after the major events, 
when no particularly intense rainfall occurred, and no land-
slides were reported, very low landslide probability values were 
correctly observed. In contrast, for the simulations of the major 
event on 10/06/2011 and 23/05/2013, where heavy rainfall and 
several landslides were recorded, the model produced high 
landslide probability values, as expected. Moreover, 3 days after 
the major events, the maximum probability values remained 
high, because the model takes into account antecedent rainfall, 

albeit with less importance than other variables. Hence, post-
event maps maintain a relatively high probability of occurrence 
instead of dropping immediately after the end of the rain. This 
outcome can be considered precautionary and in accordance 
with certain civil protection procedures, for which the transi-
tion from a high emergency level to an ordinary condition is 
usually gradual.

The validation of the maps obtained using the DTVT has 
shown satisfactory results. The optimal configuration identified, 
using a × 7 imbalanced SL database with FPT = 0.65 and IDT = 5%, 
allowed to maximize the TPs, reducing to zero the number of FNs 
and obtaining a relatively low number of FPs. This configuration 
has been verified for both simulated major events; hence, consid-
ering it valid also for future applications, it represents the basis of 
a hypothetical LEWS based on probability maps produced using 
ML. Moreover, for the simulations before and after the major 
events, the validation maps show only TNs, as expected for ordi-
nary criticality events. Using LE, it was not possible to identify a 
configuration with zero FNs recorded: even with FPT = 0.50 and 
IDT = 1%, and both with a balanced and a × 7 imbalanced data-
base, 4 and 3 FNs were obtained for the 10/06/2010 and 23/05/2013 
events respectively. This outcome further demonstrates that a 
forecasting system based on LE is less effective than one based on 
SL. The use of DTVT not only proved extremely useful for a quick 
and accurate validation of the maps, but also reaggregating pixels 
into PAUs allowed to neglect the uncertainty related to input data 
and helped in identifying a criticality level suitable for issuing 
warnings. This represents a further step forward in producing an 
instrument that is more useful for civil protection purposes and 
easily implementable in a LEWS. The FNs generated are probably 
due to limitations in the landslide database; in fact, some land-
slides might have occurred in remote areas during the two major 
events but were not detected as they did not cause any damage.

Conclusion
In this study, we introduce a method based on the use of the RF 
algorithm that integrates dynamic variables, cumulative rainfall, 
and snowmelt, for spatiotemporal landslide prediction. The RF 

Fig. 15  Values of monthly rainfall, snowmelt, and temperature (from 2010 to 2022) averaged for the entire study area, with overlayed the 
monthly landslide frequency for both SL and LE databases
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model is calibrated and evaluated using a spatially and temporally 
explicit landslide inventory; aiming to produce LHMs for a region 
in Norway affected by two major landslide events in June 2011 and 
May 2013. Below are listed the main results obtained:

• The reliability of the model was verified using OOBE and PDPs: 
these indexes allowed to evaluate to which extent the results of 
the ML were in accordance with the physical processes govern-
ing the documented landslide phenomena.

• Daily rainfall is the primary trigger for documented landslides, 
while antecedent rainfall and snowmelt result secondary, but 
not negligible. LSI’s significance underscores geological and 
geomorphological factors. Seasonal variability, particularly 
before summer when soil moisture is high, also plays a pivotal 
role in landslide initiation.

• Increasing database imbalance (through the augmentation of 
non-landslide events), if well-calibrated, provides a more real-
istic representation of events but needs to be carefully managed 
to avoid an increase in FNs.

• The procedure for defining LHMs was conceived, demonstrating 
the applicability of RF for spatiotemporal landslide forecasting.

• The use of DTVT results effective, allowing for the transition 
from pixel-based to catchment-based validation, enhancing 
model performance and suggesting potential applications for 
operational warning systems.

The innovative methodology proposed in this study offers a 
versatile framework suitable for different contexts for both spatial 
and temporal landslides forecasting. In these cases, recalibrating 
the model considering the site-specific characteristics is advisable, 
particularly when considering different landslide typologies and 
alternative dynamic variables.

Hence, it will be central for future applications to explore the 
effects of soil moisture, vegetation, and their seasonal variability 
on landslide triggering with specific approaches, in order to con-
firm the results achieved. In addition, for future implementation 
in LEWSs, the efforts will be focused on the calibration of different 
levels of warning, which could be based on FPT and IDT values.
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