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ABSTRACT  
Climate change impact on rainfall-induced landslide susceptibility of a certain region is often 
implied based on expected changes in rainfall patterns and rarely explicitly quantified. This 
study aims to address this gap by implementing coupled landslide and climate modelling 
chains to explicitly assess the effects of changing rainfall patterns on rainfall-induced landslide 
susceptibility. The effects of climate change are integrated into the landslide modelling chain 
via Intensity-Duration-Frequency (IDF) curves for the present and future climate conditions for a 
landslide-prone study area located in central Norway. The effects of climate change on landslide 
susceptibility are examined by using a physical-based landslide prediction model with rainfall 
events of varying duration and intensity that are simulated based on the climate-dependent IDF 
curves. The novelty of this study is the proposition of a novel probabilistic framework to assess 
the climate change impact on landslide susceptibility for rainfall events with a given duration. 
The proposed framework accounts for both the uncertainties of rainfall events through 
probabilistic interpretation of IDF curves and the uncertainties in the landslide model with the 
Monte Carlo method. Compared to results based on only intense rainfall events, the proposed 
framework leads to a lower increase in the probability of landslide initiation and landslide- 
susceptible extents due to climate change.
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1. Introduction

Climate change is an ongoing and unequivocal process 
(IPCC 2021). The emission of carbon dioxide (CO2) and 
other greenhouse gases over time have caused global 
warming with increased temperature and more severe 
rainfall (IPCC 2012, 2021). In the Sixth Assessment 
Report (AR6) of the Intergovernmental Panel on Cli
mate Change (IPCC), it is stated that the concentration 
of CO2 in the atmosphere has increased by over 47% 
since 1750 and pre-industrial times (IPCC 2021). The 
magnitude of the expected climate change and the 
local consequences, such as long-term trends in precipi
tation, depend on the location and are strongly 
influenced by natural and stochastic regional variations 
associated with the atmospheric dynamics and the pres
ence of various physical phenomena, such as cyclones, 
weather fronts, convection, and atmospheric rivers.

As extreme precipitation events are one of the most 
common triggering factors for landslides (Lacasse, 

Nadim, and Kalsnes 2010; Pecoraro, Calvello, and 
Piciullo 2019), changes in climate, such as increasing 
total precipitation and precipitation intensity, may have 
a noticeable impact on landslide occurrence, frequency, 
and severity (Hanssen-Bauer et al. 2017). A large number 
of countries have performed country-specific or region- 
specific climate change predictions and the corresponding 
impact on landslide occurrence (Ho, Lacasse, and Picar
elli 2017). Except for a few regions, the majority of the 
studies have reported an increase in air temperature, 
annual cumulative rainfall, and frequency of intense rain
fall events until the end of the twenty-first century. These 
long-term changes in temperature and rainfall are 
expected to have profound impacts on both nature and 
society. A predicted increase in the frequency of landslide 
occurrence and associated risks to society have been 
reported by most of the countries, although the magnitude 
of the increase varies from region to region depending on 
the meteorological, environmental, and geomorphologi
cal factors controlling the landslide occurrence.
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Quantifying the impact of climate change on landslide 
susceptibility is important for mitigating the expected 
increase in societal risk from climate-driven rainfall- 
induced landslides (e.g. hazard mapping, emergency 
management, land use planning). Several researchers 
have investigated the ongoing climate change and its 
effects on geohazards, such as shallow landslides (e.g. 
Ciervo et al. 2017; Salciarini et al. 2019), slow active land
slides (e.g. Comegna et al. 2013), reactivation of land
slides (e.g. Dixon and Brook 2007) and deep-seated 
landslides (e.g. Rianna et al. 2014). Besides, Dehn et al. 
(2000) examined the displacement rates of the mudslides 
under climate change by employing hydrological and 
rheological models. In the study of Barik et al. (2017), 
the effects of climate change on landslide susceptibility 
were investigated for sustainable forest management. 
There exist studies on climate change impact on climatic 
abnormalities, such as typhoons, and corresponding 
effects on landslide occurrences (Chiang and 
Chang 2011; Shou and Yang 2015). These studies 
employed several methods linking climate change with 
landslide occurrence, such as physical-based models, stat
istical, and empirical methods. Among them, several 
studies investigated the effect of climate change on land
slide susceptibility by employing a physical-based model 
with a rainfall event downscaled from global climate 
models (GCMs) and regional climate models (RCMs) 
(e.g. Chiang and Chang 2011; Melchiorre and Frat
tini 2012). To the extent of our knowledge, none of 
these abovementioned studies attempted to investigate 
climate change impact accounting for multiple rainfall 
events of the same duration, but mainly investigated rain
fall events of different return intervals individually, 
especially extreme rainfall events of long return intervals 
(e.g. Melchiorre and Frattini 2012; Salciarini et al. 2019). 
However, considering only extreme rainfall events with a 
low probability of occurrence may overemphasise the cli
mate change impact on landslide susceptibility.

In recent years, there has been significant progress in 
the development of physically based models for landslide 
susceptibility studies over large areas. These models take 
into account explicitly for physics, such as infiltration, 
and slope stability, rather than statistical and empirical 
methods to assess the susceptibility. There are several 
physical-based landslide susceptibility models, which 
have been employed at a local scale for a single slope or 
multiple slopes (up to 10 km2), or at a regional scale cov
ering hundreds to thousands of km2. Some of the com
monly used physical-based models can be listed as 
dSLAM (Wu and Sidle 1995), SHALSTAB (Montgomery 
and Dietrich 1994), SINMAP (Pack et al. 2005), SLIP 
(Montrasio and Valentino 2008), GEOtop coupled with 
geotechnical models, for example, GEOtop-FS (Simoni 

et al. 2008), TRIGRS (Baum, Savage, and 
Godt 2002, 2008), HIRESS (Rossi et al. 2013), and r.rot
stab (Mergili et al. 2014). Among the references to phys
ical-based models, TRIGRS (Transient Rainfall 
Infiltration and Grid-based Regional Slope-Stability 
analysis) has gained popularity due to accounting for 
excess rainfall due to soil saturation, unsaturated soil, 
and being less computational-demanding (e.g. Alvioli 
and Baum 2016; Ciurleo, Mandaglio, and Moraci 2019). 
Therefore, the current study employed the TRIGRS 
model for landslide susceptibility analysis.

This study focuses on quantifying the climate change 
impact on rainfall-induced landslide susceptibility with 
a modelling framework that includes climate and land
slide modelling chains. In the modelling framework, 
climate change is represented by Intensity-Duration-Fre
quency (IDF) curves for the present and future climate 
conditions in a case study area located in Norway. IDF 
curves were selected as they allow us to describe the stat
istical properties of rainfall in a certain area. IDF curves 
also allow one to associate rainfall events of different dur
ations and intensities with the likelihood of their occur
rence, which is essential when conducting hazard or 
risk assessment of hazards that are triggered by rainfall 
events. In this study, a straightforward semi-empirical 
formulation (Benestad et al. 2021, 2019) was utilised to 
drive the climate-dependent IDF curves. This formu
lation provides a novel method for estimating the 
approximate values of rainfall depths for both daily and 
sub-daily rainfall events. The effects of climate change 
on landslide susceptibility are investigated by simulating 
rainfall events with varying durations and intensities 
based on the IDF curves from the climate modelling 
chain. Given the rainfall events, the uncertainties in the 
TRIGRS model parameters are propagated to the 
model predictions with the Monte Carlo method. The 
TRIGRS model predictions are presented in terms of 
probability of landslide initiation as a measure of land
slide susceptibility. This study proposes a novel probabil
istic framework to obtain an integrated climate change 
impact on landslide susceptibility. This is achieved by 
accounting for the likelihood of rainfall events with vary
ing return intervals at a given duration. With the pro
posed probabilistic framework, the climate change 
impact on landslide susceptibility will be evaluated on a 
more reasonable basis by involving same-duration rain
fall events of varying intensity, and not only based on 
extreme events with intense rainfall events.

Details of the modelling framework are presented in 
Section 2. Section 2.3 introduces the novel probabilistic 
framework. Section 3 provides a description of the study 
area. In Section 4, the future climate projections and 
landslide susceptibility maps are provided. Finally, 
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Section 5 addresses several discussion points, and Sec
tion 6 summarises the paper.

2. Methodology

The conceptual framework of the studies on the impact 
of climate change on landslides mainly involves the 
climate and landslide modelling chains (Alvioli 
et al. 2018; Gariano and Guzzetti 2016), with some 
studies also incorporating sensitivity analysis (Mtongori 
et al. 2015) and stress-testing (Benestad et al. 2019). The 
climate modelling chain might include different GCMs 
and RCMs, emission scenarios, and downscaling 
methods to asses future climate conditions. In the land
slide modelling chain, physical-based, statistical, and 
empirical methods are used depending on, among 
others, landslide type, spatial and temporal scales. This 
section introduces the modelling framework that con
sists of coupled landslide and climate modelling chains. 
Implementation of the coupled modelling chains aims 
at capturing the complex interactions between, among 
others, climate, weather, and landslide processes.

Figure 1 shows the details of the modelling framework 
implemented in this study. The framework involves both 
climate and landslide modelling chains to project land
slide susceptibility under climate change. The climate 
modelling chain investigates the present climate con
ditions and provides future climate projections. In this 
study, the present and future climate conditions are exam
ined in terms of IDF curves by incorporating the simple 
formulation to estimate the approximate values of rainfall 
depths for daily and sub-daily rainfall proposed by Bene
stad et al. (2019, 2021). The details of the climate model
ling chain are presented in Section 2.1. The landslide 
modelling chain employs a physical-based landslide sus
ceptibility model, TRIGRS (Baum, Savage, and 
Godt 2008), to evaluate slope stability conditions across 
spatial and temporal scales (Section 2.2). The landslide 
susceptibility model is first calibrated based on the on 
landslide inventory, geological, meteorological, and 
hydrological conditions over the study area. The outputs 
of the climate modelling chain, the climate-dependent 
IDF curves were utilised as an input to the calibrated land
slide susceptibility model to evaluate the projected land
slide susceptibility. The projected landslide susceptibility 
simulations are performed in a probabilistic framework 
that scales the impact of rainfall events proportionally to 
their probability of occurrence (see Section 2.3).

2.1. Climate modelling chain

GCMs are useful tools to simulate the response of the 
climate system to increased levels of greenhouse gases. 

The Climate Model Intercomparison Project (CMIP), 
organised by the World Climate Research Programme 
(WCRP), has coordinated and provided common 
experimental protocols to climate modelling groups 
across the world (Eyring et al. 2016; Taylor, Stouffer, 
and Meehl 2012). The CMIP ensembles have been an 
important part of the scientific basis of the IPCC assess
ment reports (IPCC 2014, 2021). While GCMs offer a 
multifaceted view of the large-scale phenomena and 
processes in the atmosphere, they are unable to provide 
details on small-scale conditions. Hence, additional 
information is needed in order to study the local cli
matic response and consequences of a global climate 
change. The process of adding such information on 
smaller scales is known as downscaling (Benestad 
et al. 2016; Takayabu et al. 2016). One approach is to 
use empirical-statistical downscaling (ESD), which uti
lises information about the link between the large and 
small scales found in historical data. Another approach 
is dynamical downscaling, in which a RCM with higher 
spatial resolution is applied to a limited area, using 
GCM data as boundary conditions. In addition to 
these two, there is hybrid downscaling, which involves 
ESD that is trained on RCM data (Erlandsen et al. 2020).

The Coordinated Regional Climate Downscaling 
Experiment (CORDEX) provides a coordinated 
framework for climate downscaling (Jacob 
et al. 2014). While RCMs provide a versatile picture 
of the climate and can resolve many atmospheric pro
cesses and interactions, there are drawbacks to dyna
mical downscaling. RCMs may not be physically 
consistent with the GCMs from which they take 
their boundary conditions and RCM output tends to 
require bias correction before being used in impact 
studies. Because of the computational costs of dyna
mical downscaling, RCMs are typically applied to a 
limited number of GCM simulations and the small 
RCM ensembles may not provide an adequate sample 
of regional outlooks (Mezghani et al. 2019). Ideally, it 
is recommended to combine ESD and RCMs since 
they have different strengths and weaknesses indepen
dent of each other.

2.1.1. Precipitation data
Changes in the climate were examined based on the 
dynamically downscaled climate model data and his
torical observations of precipitation. The present cli
mate condition was examined based on the historical 
observations of precipitation, while the projections of 
precipitation from climate model simulations were 
combined with the historic observations to obtain the 
future climate conditions. Daily precipitation data for 
climate projections are obtained from dynamically 
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downscaled high-resolution CORDEX simulations for 
Europe (EUR-11) (Jacob et al. 2014). The data ensem
ble consists of 56 projections, which combine 22 RCMs 
with a spatial resolution of 0.11◦( ≈ 12.5 km) that are 
applied to the output from 8 different GCM simu
lations from CMIP5 (Taylor, Stouffer, and 
Meehl 2012). There are inter-dependencies between 
the different RCM runs, both due to common bound
ary conditions provided by the same GCM and 
repeated RCM models with specific biases. The spread 
nevertheless gives some indication about the level of 
uncertainty associated with these results, keeping in 
mind that such a small number of GCM simulations 
may not represent the whole range of possible out
comes (Mezghani et al. 2019). Additionally, historic 
precipitation data were obtained from the weather 
stations and retrieved from the Norwegian Meteorolo
gical Institute using the Frost application programming 
interface (MET n.d.).

2.1.2. Intensity-duration-frequency calculations
A simple semi-empirical formula was used to calculate 
approximate daily and sub-daily rainfall statistics in 

terms of IDF curves (Benestad et al. 2021):

xL = am
L
24

􏼒 􏼓z

ln (fwt) (1) 

where xL is the return level,i.e. rainfall depth, (in mm) 
associated with rainfall duration L (in hours), τ is the 
return interval, μ is the wet-day mean precipitation (in 
mm/day) and fw is the wet-day frequency 
(fw [ [0, 1]). The values for α and ζ reflect how the 
daily rainfall statistics diverge from an exponential dis
tribution and how the different time scales are con
nected, respectively. They are approximately constant 
in Norway, whereas μ and fw reflect the local rainfall 
statistics that to a greater extent vary both geographi
cally and temporarily.

Here, μ and fw were calculated based on daily precipi
tation data using a threshold of 1 mm/day to define a 
“wet-day”. fw was calculated as the fraction of days in 
a month above the threshold and μ as the mean precipi
tation on those wet days. IDF curves were estimated for 
two time horizons: 1981–2010 and 2071–2100, using the 
values of μ and fw applied to Equation (1). For the pre
sent day, the rainfall depths were calculated using all 

Figure 1. Modelling framework including climate and landslide modelling chains. The variables μ represents the wet-day mean pre
cipitation whereas fw refers to the wet-day frequency.
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available observational data in the reference period. For 
the future period, the rainfall depths were calculated 
using the observed mean values of μ and fw for the pre
sent day, and then adding the projected changes in μ 
and fw from the present day to the future period, 
which were calculated based on RCM simulations.

2.2. Landslide modelling chain

Landslide prediction over large areas often depends on 
establishing a functional relationship between meteoro
logical conditions and slope stability. The relationship 
can be developed and implemented with several 
approaches such as simple rainfall–landslide relation
ship based on a threshold level (Ciervo et al. 2017; San
gelantoni, Gioia, and Marincioni 2018), empirical 
methods including several factors associated with land
slides (Dixon and Brook 2007; Shou and Yang 2015), 
machine learning models (Chang et al. 2020; Huang 
et al. 2020a, 2020b, 2020c; Kainthura and Sharma 2022; 
Su et al. 2022; Xiao et al. 2022), or physical-based 
models (Alvioli et al. 2018; Chiang and Chang 2011; 
Melchiorre and Frattini 2012; Salciarini et al. 2019; 
Scheidl et al. 2020). Among these methods, physical- 
based models are widely utilised as they generally incor
porate hydrological and geotechnical processes expli
citly into the landslide modelling. These models can 
be utilised for spatial and temporal prediction of land
slide initiation, or for landslide susceptibility assess
ment. TRIGRS was applied in this study as one of the 
most commonly used models (e.g. Ciurleo, Mandaglio, 
and Moraci 2019; Park, Nikhil, and Lee 2013; Weidner 
et al. 2018).

The calibration of physical-based models is a crucial 
step for landslide susceptibility analysis, as it allows for 
more reliable predictions. A calibration strategy can be 
selected based on the available information and 
advanced calibration methods (e.g. Depina, Oguz, and 
Thakur 2020; Luo et al. 2022) can be utilised. In this 
study, the calibration strategy of the TRIGRS model 
was selected and implemented by considering the col
lected information over the study area on geology, land
slide inventory, meteorological conditions, and 
hydrological conditions. The details of the calibration 
will be provided in Section 3.4.

2.2.1. TRIGRS model
TRIGRS is a Fortran code developed to obtain the 
spatial and temporal distribution of rainfall-induced 
shallow landslide occurrence over large areas (Baum, 
Savage, and Godt 2002, 2008). The model couples a 
hydrological infiltration model, a model for routeing 
of runoff, and an infinite slope stability model to 

examine the response of large areas to rainfall events. 
The TRIGRS is a cell-based model where the calcu
lations for the infiltration and slope stability are per
formed on cell-by-cell basis, i.e. individually for each 
cell over the discretised domain.

The hydrological infiltration model is based on analyti
cal solutions to the one–dimensional Richards equation 
describing the vertical movement of water through the 
soil medium. This study assumed saturated initial con
dition in TRIGRS model. Accordingly, the solution for 
the transient pore pressure head, c(Z, t) (Equation (2)) 
superposes the steady long-term, c0(Z), and transient 
short-term response, c1(Z, t), to a rainfall event.

c(Z, t) = c0(Z)+ c(Z, t) (2) 

where Z is the vertical depth from the ground surface and t 
is the time. The steady long-term component is a function 
of Z, initial ground water depth vertically from ground 
surface, d, slope angle, δ, long-term vertical infiltration 
rate, IZLT , and hydraulic conductivity, KS (Equation (3)).

c0(Z) = (Z − d)[ cos2 (d) − IZLT/KS] (3) 

For the transient short-term component, TRIGRS pro
vides solutions for two subsurface conditions: an infinite 
depth basal boundary and an impermeable basal bound
ary at finite depth. In case of having a relatively uniform 
hydraulic property through depth, the solution for a sub
surface condition with a basal boundary at an infinite 
depth applies. However, the other solution applies where 
there is an impermeable basal boundary at a finite depth 
or a high contrast in hydraulic property through depth. 
In this study, the solution for infinite depth basal bound
ary was employed in the model. The formulation for the 
transient short-term component can be found in TRIGRS 
manual (Baum, Savage, and Godt 2008). The hydrological 
infiltration model may result in unrealistic pressure heads 
at shallow depths (Iverson 2000). Therefore, calculated 
pressure heads are restricted by c(Z, t) ≤ Z[ cos2 (d) 
− (IZLT/KS)] in the model.

The TRIGRS model routes the excess rainfall water 
due to soil saturation or the exceedance of infiltrability 
of the soil. The excess rainfall water is routed to down
slope to the adjacent cells, proportional to the weighing 
factors assigned to the adjacent cells.

TRIGRS employs an infinite slope stability model cal
culating the factor of safety of a slope, FS, as a ratio of the 
resisting to driving forces:

FS(Z, t) = tanf′/ tan d+ (c′

− c(Z, t)gw tanf′/(gsZ sin d cos d) (4) 

where c′ is the effective cohesion, f′ is the effective fric
tion angle, gw and gs are unit weight of water and soil 
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respectively, and δ is the slope angle. Slope stability 
assessment is conducted along the depth, and the mini
mum FS is provided. A slope is considered to be stable if 
FS . 1.0 and unstable if FS ≤ 1.0.

2.2.2. Uncertainties in model parameters
The uncertainties in the geotechnical and hydrological 
parameters have been reported in the literature (Baecher 
and Christian 2003; Fenton and Griffiths 2008; Phoon 
and Kulhawy 1999). The lack of knowledge on the par
ameters and the inherent natural variability due to the 
varying deposition and formation processes in geologi
cal history are mainly accepted as sources of the uncer
tainty. Avoiding this uncertainty and employing 
deterministic values for the geotechnical and hydrologi
cal parameters may result in conservative or unrealistic 
results.

Several studies have accounted for the variability of 
the model parameters in physical-based landslide mod
elling (e.g. Arnone et al. 2016; Melchiorre and Frat
tini 2012; Raia et al. 2014; Rossi et al. 2013; Scheidl 
et al. 2020). Among them, Raia et al. (2014) reported 
improvement of the predictive capacity of the TRIGRS 
model when the variability of the model parameters is 
accounted in the model simulations. In this study, 
TRIGRS model has been coupled with Monte Carlo 
method due to its robustness and straightforward 
implementation. The uncertainties in the model par
ameters are propagated to the model output in terms 
of FS by performing 1000 Monte Carlo simulations. 
The TRIGRS model simulation outputs were utilised 
to evaluate the probability of landslide initiation for a 
given value of rainfall duration and intensity, Pf (L, I), 
which is calculated as:

Pf (L, I) = P(FS ≤ 1.0|L, I) =
1

NS

􏽘NS

i=1
l(FS,i − 1.0) (5) 

where L and I are duration and intensity of the rainfall 
event, NS is the number of simulations, FS,i is the factor 
of safety of ith simulation, and λ is the indicator function 
providing 1 if FS,i − 1.0 ≤ 0, and 0 otherwise.

2.3. Probabilistic framework

The effects of climate change on landslide susceptibility 
have been mainly evaluated under extreme conditions 
such as intense rainfall events with long return inter
vals (e.g. Melchiorre and Frattini 2012; Salciarini 
et al. 2019; Scheidl et al. 2020; Shou and Yang 2015). 
However, these extreme events have low probability 
of occurrence and may result in misleading assessment 
of climate change impact on landslide susceptibility. 

Accounting for the probability of occurrence of rainfall 
events can provide a better understanding of climate 
change impact. Therefore, there is a need for a prob
abilistic framework to account for the probability of 
occurrence of rainfall events with varying return inter
vals to understand climate change impact on landslide 
susceptibility.

This study proposes a probabilistic framework to 
account for the probability of occurrence of rainfall 
events and obtain a comprehensive climate change 
impact on landslide susceptibility. The proposed frame
work is advantageous as it integrates the results from 
both the landslide and climate modelling chains in a 
consistent approach and provides an integrated climate 
change impact of multiple rainfall events of the same 
duration. The resulting estimate is the probability of 
landslide initiation for a given value of rainfall duration, 
Pf (L), calculated as follows:

Pf (L) = P(FS ≤ 1.0 | L)

=

􏽚􏽚􏽚

P(FS ≤ 1.0 | L, I)f (I | m, fw, L)f (m, fw) dI dm dfw

(6) 

where P(FS ≤ 1.0 | L, I), i.e. Pf (L, I) is the probability of 
landslide initiation conditioned on L and I values, 
f (I | m, fw, L) is the probability density function (pdf) 
of rainfall intensity conditioned on the values of μ, fw, 
and L, and f (m, fw) is the likelihood of a given pair of 
μ and fw based on data ensemble of CORDEX simu
lations for Europe. Distribution of m − fw pairs for cli
mate projections was modelled by Gaussian 
distribution using the 56 projections. f (I | m, fw, L) 
was modelled by the Gumbel distribution, with the dis
tribution parameters determined by fitting the distri
bution to the intensity values provided by the climate 
model based on μ and fw for a given value of L.

The landslide susceptibility analyses were performed 
for intensity values for a given duration, which were 
obtained by discretizing the range of intensity values 
in the climate-dependent IDF curves. Then, Equation (6) 
was utilised to integrate the results, Pf (L, I), over rainfall 
intensity and obtain Pf (L) for both present and future 
climate conditions for a given value of L.

3. Study area

The study area (11.2304 − 11.7571◦E/63.3594 
− 63.5144◦N) is located in Trøndelag, central Norway  
Figure 2(a). It covers around 200 km2 of the catchment 
of the Stjørdal river Figure 2(b) that flows from the 
Swedish border on the east and discharges into the 
Trondheim Fjord on the west.
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3.1. Weather conditions

In the report of “Climate in Norway 2100” (Hanssen- 
Bauer et al. 2017), the climate observations in Trønde
lag, central Norway show that the mean air temperature 
increased by ca. 0.1◦C per decade since 1900. In the 
period of 2000–2021, the average mean air temperature 
is approximately 4.9◦C and may typically vary from 
− 30◦C to +34◦C in a year.

There are two weather stations in operation, one on 
the east and one on the west of the study area. The 
weather station on the east is in operation since 2004 
and therefore has limited available data. The station 
on the west, Østås i Hegra (station id: 69550, 
11.3536◦E/63.4871◦N) is in operation since 1895 and 
has reliable and long observation data. Therefore, for 
the climate projections, daily precipitation observations 
from the station Østås i Hegra were utilised.

Based on the historical observations of precipitation 
from station Østås i Hegra, there has been an increasing 
trend in annual μ of the order of 0.002 mm/day per year 
consistent with an increase from 6.8 mm/day in 1900 to 
7.1 mm/day in 2020. Similarly, there has been an 
increase in fw on the order of 0.0003 per year, from 
0.39 in 1900 to 0.43 in 2020.

3.2. Geology

The study area is underlined by the bedrock com
posed of Proterozoic and Cambrian metamorphic 
rocks deformed during the Caledonian orogenesis. 
There exists a layer of Quaternary deposits of differ
ent origin covering the bedrock. Based on the avail
able geological map from the Geological Survey of 
Norway (NGU n.d.), the Quaternary deposits include 
glacial deposits (moraine), marine deposits below the 
marine limit in the proximity of the Stjørdal river, 
river – stream (fluvial) deposits, fluvial material trans
ported and deposited by glaciers (glaciofluvial depos
its), loose masses formed by physical and chemical 
degradation of the bedrock, thin peat and humus 
cover over bedrock, and bedrock outcrop. Fluvial 
and glaciofluvial deposits have the same material 
composition with different phenomena in transpor
tation and deposition history. Additionally, marine 
deposits also have similar composition of fluvial 
deposits and only exist occasionally near the river 
with small extents. Therefore, the fluvial deposits, gla
ciofluvial deposits, and marine deposits have been 
grouped as “fluvial deposits” for simplicity. Similarly, 
the bedrock outcrop and loose masses formed by the 
physical and chemical degradation of the bedrock 
have been grouped as “rock”. Figure 2(d) shows the 

Quaternary map of the study area including four 
geology units: moraine deposits, fluvial deposits, 
humus–peat, and rock.

The moraine deposits were picked up, and trans
ported by glaciers. These deposits are generally hard- 
packed, poorly sorted, and may contain anything from 
clay to rock. The thickness varies from very thin, 0.2  
m, to a few metres or even more. The fluvial deposits 
have sorted and rounded sand – gravel dominated com
position, and mainly located along the Stjørdal river. 
Generally, a thick cover of fluvial deposits, from 0.5 m 
to more than 10 m, does appear in the study area. The 
humus – peat has high organic content due to roots 
and plants, and generally exists as a thin cover, less 
than 0.5 m over the bedrock. Finally, the rock type 
includes bedrock crops and weathered rocks. NGU 
reported the infiltration rates as varying from very 
poor to poor in the deposits that cover the hillslopes 
(e.g. moraine), while there is a relatively good infiltra
tion capacity in the deposits covering the bottom of 
the valley (e.g. fluvial deposits).

Due to the TRIGRS model being applicable to soil- 
related landslides, this study focuses on moraine and 
fluvial deposits, but not rock and humus–peat. The 
moraine and fluvial deposits cover 40% of the study 
area Figure 2(d), with 32% being moraine and 8% 
being fluvial deposits. The average slope angle over 
the moraine area is 14.7◦ while it is 10.2◦ for the 
fluvial deposits as the fluvial deposits are mainly located 
along the Stjørdal river. Additionally, the extent of the 
moraine with a slope angle greater than 30◦ is 
4.2 km2, while it is 0.9 km2 for the fluvial deposits.

3.3. Landslide inventory

The elevation of the study area was obtained from the 
map service “hoydedata.no” from the Norwegian Map
ping Authority (Kartverket n.d.) and ranges from 23.5  
m to 1109.6 m with a bumpy topography. Slope angles 
and direction of runoff were derived from the digital 
elevation model (DEM) with a resolution of 10 m. 
Very steep slopes can be found along the Stjørdal river 
with slope angles greater than 30◦ Figure 2(c). The 
study area was reported to have very high landslide 
susceptibility by the Norwegian Water Resources and 
Energy Directorate, NVE (Devoli, Bell, and 
Cepeda 2019).

The national database of mass movements of Nor
way, “skredregistrering.no” (NVE n.d.) was investigated 
for the study area. The mass movements in the database 
include rockfalls, stone slides, snow avalanches, debris 
flow – avalanches, clay slides, icefalls, and slides on 
the road fill. In the study area, 93 registered mass 
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movements were registered, located mainly along the 
main transportation lines. Among these registered 
mass movements, 35 events are classified as landslides 
in soil and were triggered by rainfall, snow-melting, or 
a combination of these two. These landslide events 
were reported to be shallow, and the volumes were esti
mated in the range of 5–50 thousand m3 . Among them, 
16 landslide events have polygonised source and runout 
zones that were obtained by evaluating the aerial 

pictures over time and field surveys. Figure 3 shows 
the landslide domain over the study area with two 
zoomed-in locations showing examples of polygonised 
landslide events. Figure 3a shows also the susceptibility 
levels at catchment scale (Devoli, Bell, and Cepeda 2019) 
by the logistic regression method and the zones suscep
tible to debris flow (Fischer et al. 2012) by using an 
index-based approach considering topographic 
characteristics.

Figure 2. Location of the study area in (a) national scale, (b) Trøndelag, central Norway, with (c) slope and (d) geology maps.

Figure 3. (a) Landslide domain over the study area in Trøndelag, central Norway, with two zoomed-in locations: (b) location-1 and (c) 
location-2.
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Moreover, the landslide events were further filtered 
considering the quality of registration, date of occur
rence (events after 2000), position and time, registration 
accuracy, and weather conditions on the date of occur
rence. Following the filtering of events, 19 events were 
found to be convenient for the scope of the current 
study. Among the 19 landslide events, 14 events have 
polygonised initiation zones. For the remaining 5 
events, possible initiation zones were located consider
ing the descriptions in the national database and the 
topographic characteristics of the study area. A point 
with a 20 m buffer zone was placed on the possible 
initiation zone to be used in the TRIGRS model 
calibration.

Among the 19 events, 13 events are in fluvial 
deposits, and 3 events are in moraine. The remaining 
3 events overlap both soil types. The initiation zones 
of the 19 landslide events include varying degrees of 
slopes from soft (0–10◦) to very steep (. 40◦), with 
29.2◦ being the median. Five landslide events do 
not have cells with a slope greater than 30◦. The 
spatial extent of the 19 landslide landslides events 
varies from 500 to 3700 m2, with 1615 m2 being the 
average.

The meteorological and hydrological conditions for 
the landslide events were determined by utilising the 
observations at the nearby weather stations and the 
national web portal, “xgeo.no” (Xgeo n.d.) which is 
a tool for visualising spatial and temporal data includ
ing observations, model simulations, forecasts, and 
real-time data. The 19 events occurred between 2000 
and 2019, mainly in the periods of February – 
March and August – September. The analysis of 
hydrometeorological conditions revealed that the 
selected landslides were triggered by intense rainfall 
in the period of August – September, or by the com
bination of intense precipitation and some snow melt
ing in the period of February – May. The average 
water supply was 49.8 mm/day in the range of {11.9, 
82.0}. The degree of soil saturation data provided by 
Xgeo shows that the average degree of soil saturation 
was 79.1% with a minimum of 49% and a maximum 
of 99%. The reported percentages for degree of soil 
saturation describe the relationship between the soil 
water storage compared to the maximum soil water 
storage simulated by the rainfall-runoff HBV model 
(Beldring et al. 2003) in the reference period 1981– 
2010. Additionally, the ground water table levels on 
the day of landslide events were also reported to be 
very high compared to the normal levels for most of 
the events. The pictures of the landslide deposits in 
the runout zones also revealed the high water content 
in the sliding mass.

3.4. Calibration of landslide model parameters

In the calibration process, a conventional deterministic 
approach was implemented with the parameters 
assumed to be constant for each geological unit as a 
compromise between the accuracy and high compu
tational demands of a probabilistic calibration (Depina, 
Oguz, and Thakur 2020). Considering the degree of sat
uration ratio values, and the ground water levels for the 
19 landslide events, the soil was assumed to be fully 
saturated with a ground water table at the ground sur
face at the time of landslide initiations, i.e. after rainfall. 
Additionally, fully dry condition was assumed for before 
rainfall condition when all study area should be stable. 
The possible ranges of geotechnical strength par
ameters, i.e. cohesion and friction angle for fluvial 
deposit and moraine, were determined by considering 
the literature (Depina, Oguz, and Thakur 2020; Mel
chiorre and Frattini 2012) and the definitions of the 
soil types by NGU. For the fluvial deposit, low cohesion 
values, 1–5 kPa , with a friction angle in the range of 39– 
43◦ were examined. Similarly, for the moraine, the cohe
sion and friction angle parameters were examined in the 
ranges of 3–9 kPa, and 29–36◦ . The parameter ranges 
were discretised into integer values and all sets of par
ameters were determined from the combination of the 
discretised values.

Some of the commonly used metrics to evaluate the 
performance of the model are provided in Fawcett 
(2006) and include false/true positive (FP/TP), true/ 
false positive rate (TPR/FPR), accuracy, precision. Simi
larly, the success rate, the Kappa value, and modified 
success rate are other metrics used in the literature 
(Huang and Kao 2006). For the performance evaluation, 
this study employed an objective function, which 
accounts for both the stability of the study area before 
and after a rainfall event and capturing the landslide 
initiation zones. The objective function, fobj 
(Equation (7)) accounts for: (i) the ratio of the number 
of initiated landslides to the total number of landslide 
events before the rainfall event; (ii) the ratio of the num
ber of missed landslide events to the total number of 
landslide events after rainfall event; and (iii) the FPR 
after the rainfall event. The lower the value of fobj, the 
better the performance of the model is. 

fobj =

􏽐Nl
i=1 l(min(FSj:j = 1, . . . , k) − 1.0)

Nl

􏼢 􏼣

beforerainfall

+ 1 −
􏽐Nl

i=1 l(min(FSj:j = 1, . . . , k) − 1.0)
Nl

􏼢 􏼣

afterrainfall

+ c(FPR)afterrainfall

(7) 
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where Nl is the number of initiation zones of the land
slide events, FSj is the factor of safety of cell j inside the 
landslide i, k is the total number of cells inside landslide 
i, c is the importance weight of predicting the stable 
zones after the rainfall event, and λ is the indicator func
tion. FPR is the ratio of cells predicted as unstable out
side of the discretised landslide zone (FP) to the number 
of cells without landslide observation (N ) and calculated 
as FPR = FP/N.

The criteria in the calibration procedure is that the 
landslide events should be stable before rainfall and pre
dicted after rainfall, and the zones outside of the discre
tised landslide initiation zone should be stable after 
rainfall. The coefficient c adjusts the stability of the 
study area after the rainfall event. As the coefficient c 
increases, the study area becomes more stable with a 
lower FP after rainfall. At a certain value of c, the set 
of parameters providing the best performance gives 
zero FP after rainfall. At this point, the balance between 
over- or under-predicting the stable zone and capturing 
the landslide events is accepted to be achieved. Then, the 
set of parameters resulting in the lowest FS over the 
landslide initiation zones is selected.

TRIGRS simulations were performed for each set of 
parameters to determine the optimal geotechnical 
strength parameters of fluvial deposit and moraine 
type of soils with the model performance being evalu
ated by fobj. The coefficient c in Equation (7), increased 
from zero to a certain value providing zero FP after rain
fall for the set of parameters providing the best perform
ance. In case of having several sets of parameters 
providing the same value of fobj with zero FP, the set 
of parameters giving the lowest FS for the landslide 
initiation zones was selected. Following the perform
ance evaluation of all sets of parameters, cohesion and 
friction angle were selected as 6 kPa and 35◦ for mor
aine, and 5 kPa and 40◦ for the fluvial deposits. The 
assigned parameters are also in great agreement with 
the geotechnical strength parameters obtained by 
large-scale direct shear tests (Oguz et al. 2022).

The performance of the calibration process based on 
Equation (7) was found to be satisfactory. After the cali
bration, the whole study area including both the cells 
with landslide and non-landslide observation is stable 
before rainfall, and all landslide events, except 5 land
slide events having no cells with a slope greater than 
30◦, are captured after rainfall (i.e. having a factor of 
safety of 1). The minimum factor of safety of the cells 
in the 5 non-captured landslide initiation zones ranges 
between 1.1 and 1.5. An accuracy of 99% was achieved 
after rainfall, but mainly due to the landslide inventory 
being incomplete over the study area, and lack of infor
mation on initial conditions.

In this study, the hydrological parameters were not 
estimated in this calibration process as the infiltration 
does not change the transient pore pressure response at 
fully saturation condition, and not accounted for at dry 
condition. Instead, a parametric hydrological analysis 
was performed via TRIGRS model to investigate the 
response of soils with varying hydrological parameters 
to the present and future IDF curves (Appendix A). 
The hydrological parameters of two soil types: fluvial 
deposit and moraine were determined by considering 
the literature (Depina, Oguz, and Thakur 2020; 
Melchiorre and Frattini 2012), the hydrological charac
teristics reported by NGU, and the parametric hydrologi
cal analysis. The KS for moraine and fluvial deposit have 
been selected as 5.0 · 10− 5 and 1.0 · 10− 4 m/s, respect
ively. Additionally, the ratio of D0/KS was decided as 
50 to avoid too slow or fast pore pressure build-up.

Table 1 shows the calibrated geotechnical strength 
parameters and selected hydrological parameters for 
the geological units, moraine and fluvial deposits. In 
this study, the humus–peat and rock units were omitted 
from the analyses. Due to the lack of field data on depth 
to bedrock, H (m), it was calculated by an empirical 
relationship between the depth and slope inclination 
in degree, H = 5.0 exp ( − 0.04d) (Baum, Godt, and 
Savage 2010). While such empirical relationships are 
often used in regional landslide susceptibility analyses, 
their accuracy may be limited. The variability levels of 
the model parameters, i.e. CoV, were assigned consider
ing the values in the literature (Depina, Oguz, and Tha
kur 2020; Melchiorre and Frattini 2012; Phoon and 
Kulhawy 1999), and used only for moraine and fluvial 
deposits in the TRIGRS model simulations. Cross-cor
relation among the soil parameters (e.g. Javankhoshdel 
and Bathurst 2016) is not accounted for in the probabil
istic landslide susceptibility analyses.

4. Results and discussion

4.1. Future climate projections

In this study, the high emission scenario,representative 
concentration pathway (RCP), RCP8.5, based on the 

Table 1. Model parameters.

Parameter Distribution Moraine
Fluvial 
deposit CoV

Depth to bedrock, H (m) – 5.0 exp ( − 0.04d)a 0.25
Unit weight, γ (kN/m3) Normal 20 19 0.02
Cohesion, c (kPa) Lognormal 6 5 0.3
Friction angle, f (◦) Normal 35 40 0.1
Saturated permeability, 

KS (m/s)
Lognormal 5.0 · 10− 5 1.0 · 10− 4 0.25

Diffusivity, D0 (m2/s) Lognormal 2.5 · 10− 3 5.0 · 10− 3 0.25
aSlope, δ is in degrees.
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assumptions of no climate policy, was investigated and 
the corresponding Euro-CORDEX ensemble was uti
lised. Figure 4 displays the projected change in wet- 
day mean precipitation (μ) and frequency (fw) in 
Equation (1), from the period of 1981–2010 to the end 
of the century (2071–2100), based on the Euro-COR
DEX ensemble. For each simulation, the grid point of 
the Euro-CORDEX data closest to the weather station, 
Østås i Hegra, was selected. From Figure 4, it can be 
seen that most of the RCMs of the Euro-CORDEX 
ensemble simulated increases in both μ and fw with 
further global warming, both of which are key par
ameters of Equation (1). The results revealed the varia
bility in the projections by the RCMs in the ensemble. 
The projected changes in μ and fw, by the ensemble 

mean, are 0.836 mm/day (σ: 0.387) and 0.0189 day/ 
month (σ: 0.0248), respectively.

A bivariate Gaussian distribution was fitted to the 
projected changes in μ and fw by assuming indepen
dence between the parameters (Figure 4). The goodness 
of fit of the Gaussian distribution was evaluated with 56 
pairs of μ and fw using a chi-squared test. The test 
yielded a chi-square value of 7.5 with 36 degrees of free
dom and a p-value of 0.83, indicating that the data is 
consistent with a Gaussian distribution, and can be 
used to model the relationship between μ and fw.

Figure 5 shows the 10-, 50- and 100-year IDF curves 
for the present climate calculated from observations 
(blue solid line), and ensemble statistics for the end of 
the century estimated from the Euro-CORDEX ensem
ble combined with the observations. While red solid 
lines show the ensemble mean, the dashed lines show 
5th and 95th percentiles. The results suggest a consider
able increase in the rainfall depths for all return inter
vals. There is some spread within the Euro-CORDEX 
ensemble, but even the 5th percentile indicates an 
increase compared to the present day, which makes 
sense as the majority of models projected an increase 
in both μ and fw (Figure 4).

Figure 6 shows the IDF curves representing the pre
sent climate conditions based on observations, and 
future projections based on the mean projected change 
by the Euro-CORDEX ensemble combined with the 
observations, for a range of return intervals (2, 5, 10, 
50, 100 and, 200 years). The climate-dependent IDF 
curves are presented as rainfall depth in Figure 6(a) 
and as rainfall intensity in Figure 6(b) by dividing the 
rainfall depths by the corresponding rainfall durations. 
The results showed that the rainfall depths increase by 
a mean factor of 1.128 ([ [1.126, 1.130]) due to climate 
change.

Figure 4. Projected changes in the wet-day mean precipitation 
(μ) and frequency (fw) from a reference period (1981–2010) to 
the future (2071–2100) with the fitted bivariate Gaussian 
distribution.

Figure 5. Estimated rainfall depths for (a) 10-, (b) 50-, and (c) 100-year return intervals based on RCM simulations from EURO-CORDEX 
assuming emission scenario RCP8.5.
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4.2. Projected landslide susceptibility

For the landslide susceptibility analyses, the initial 
ground water table was assumed at the bottom of the 
soil layer, and the rainfall events were simulated as a 

uniform spatial event during rainfall duration. The 
landslide susceptibility analyses were conducted over 
the entire study area (Section 3) and corresponding stat
istics of the probability of failures, Pf (L) and Pf (L, I), are 
provided. Just for visual inspection, these values of 

Figure 6. Estimated rainfall depths for Østås i Hegra weather station based on RCM simulations from EURO-CORDEX assuming emis
sion scenario RCP8.5 (a) and rainfall intensities (b).

Figure 7. The representative zone for the illustration of climate change impact: (a) regional scale, (b) aerial photo, (c) geology and (d) 
slope maps.
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probability are provided over a representative zone  
Figure 7(a) in Figures 8–10 due to study area being 
too large. On closer inspection in Figure 7, it can be 
seen that the representative zone has both soil types of 
interest Figure 7(c) and steep slopes can be found in 
areas with both soil types Figure 7(d).

This section will present, first, climate change impact 
on the response of the study area to different rainfall 
durations by providing Pf (L) maps obtained by the pro
posed probabilistic framework (Section 2.3). This 
framework utilised 1000 pairs of μ and fw, which were 
drawn from the bivariate Gaussian distribution for the 
projected changes in μ and fw in Figure 4, and associated 
climate-dependent IDF curves. Secondly, the climate 
change impact for the rainfall events of different return 
intervals will be provided with the corresponding 
Pf (L, I) maps.

4.2.1. Climate change impact for multiple rainfall 
events of same duration
Figure 8 shows climate change impact for 6-, 12-, and 
24-hour rainfall events and provides the Pf (L) maps 
for both present and future climate conditions. As the 

proposed probabilistic framework scales the impact of 
intense rainfall events proportionally to the their likeli
hood, the events with high return intervals such as 50-, 
100-year have less influence on Pf (L) than more fre
quent rainfall events with a smaller return interval. 
For this reason, the change in Pf (L) is not large overall 
for the different durations and climate conditions. How
ever, substantial differences can be detected when the 
statistics are examined for different ranges of slopes. 
The analyses showed that the Pf (L) is higher for 
6-hour duration at both present and future climate con
ditions compared to longer duration rainfall events 
(Figure 8). This is attributed to the fact that the pdf 
values of the Gumbel distribution, f (I | m, fw, L) in 
Equation (6), for lower return interval events are higher 
for 6-hour duration than the corresponding values for 
12- and 24-hour duration. That is, P(FS , 1.0 | L, I) 
in Equation (6) might be similar for different duration 
rainfalls as the intensity values also vary, but the 
f (I | m, fw, L) of more frequent rainfall events is higher 
for shorter durations.

In Figure 8, it can be seen that the Pf (L) values for the 
future climate condition are greater than the present 

Figure 8. Pf (L), maps for present (a, c, e) and future (b, d, f) climate conditions for 6-hour (a, b), 12-hour (c, d), and 24-hour (e,f) rainfall 
events.
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condition. The difference between the Pf (L) values for 
the present and future climate conditions (Δ) and the 
relative difference (Drel.) are provided in Figure 9. 
Additionally, mean difference (D), and mean relative 
difference (Drel.) are tabulated in Table 2 for different 
ranges of slopes. It was observed that the difference, Δ, 
may be up to 9.7%, 8.4%, and 3.7% at certain parts of 
the study area for 6-, 12-, and 24-hour rainfall events, 
respectively. Figure 9(a–c) and Table 2 show that the 
Pf (L) increases by approximately 3–4% over very steep 
slopes. Table 2 shows that the mean difference is higher 
for 6-hour duration for all ranges of slopes and 
decreases as the duration increases.

From Figure 9(d–f), and Table 2, it can be seen that 
there exists a relative difference of 14–20% in Pf (L) for 
the slopes in the range 30◦ to 45◦. Table 2 shows that 
Drel. for moderate slopes, from 25◦ to 30◦, are very 
high as the small change in Pf (L) at low values results 
in very high Drel.. Besides, in this study, the low values 

of Pf (L) were not estimated with high accuracy due to 
relatively low number of samples in Monte Carlo analy
sis, and therefore, these low Pf (L) values have a high 
degree of uncertainty. It is observed that few cells have 
a negative difference in Pf (L), which is likely due a rela
tively low number of samples in the Monte Carlo 
analysis.

Table 3 provides mean values of Pf (L) for different 
ranges of slopes. From Table 3, it can be seen that the 
values of mean Pf (L) are higher for 6-hour duration. 
As the duration increases, the mean Pf (L) values 
decrease for each range of slopes. The effect of climate 
change impact on the mean Pf (L) is absolute for each 
duration in both Tables 2 and 3. For example, the 
mean Pf (L) increases, due to climate change, from 
22.19% to 25.50%, by 3.31%, for 6-hour rainfall events 
over the slopes between 40◦ and 45◦. In the literature, 
there exist several methods for the assessment of land
slide stability in probabilistic studies, such as the 

Figure 9. (a, b, c) The difference Δ between the Pf (L) maps for present and future climate conditions and (d, e, f) relative difference 
Drel. : (a, d) 6-hour, (b, e) 12-hour, and (c, f) 24-hour.
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reliability index (Haneberg 2004), the stability index 
(Michel, Kobiyama, and Goerl 2014), or defining 
criterion on the extent with the probability of landslide 
initiation, Pf , greater than a certain value (Rossi 
et al. 2013). However, there is a lack of consensus on 
the assessment criteria for the susceptibility condition 
in the probabilistic studies. That is, there is no widely 
recognised level of Pf , P f ,limit such that a slope is con
sidered landslide-susceptible if Pf . P f ,limit and stable 
otherwise. Therefore, this study employs several P f ,limit 
values in the range from 10% to 40% and provides the 
extent of landslide-susceptible zones with a 
P f . P f ,limit .

Table 4 shows the extent of zones with 
Pf (L) . P f ,limit for both present and future climate con
ditions for 6-, 12-, and 24-hour durations. The values in 
parentheses are the extents of the moraine and fluvial 
deposits, respectively. It is observed that 6-hour dur
ation has the larger extent regardless of P f ,limit , and 
has highest Pf (L) values exceeding 40%. When the dur
ation increases, the extent of zones with Pf (L) . P f ,limit 
decreases. From Table 4, one can observe that climate 

change significantly increases the extent of zones for 
each duration. It can be also seen that the extents of 
moraine are always greater than the extents of fluvial 
deposits as the moraine has larger spatial extent with 
steep slopes compared to the fluvial deposits.

4.2.2. Climate change impact for a given rainfall 
event
Landslide susceptibility simulations were performed for 6-, 
12-, and 24-hour duration rainfall events of varying return 
intervals. The landslide susceptibility assessments were 
similar for different duration rainfall events of same return 
interval. This was attributed to having similar transient 
pore pressure responses for different duration rainfall 
events of same return interval (see Appendix A,  
Figure A2). In this section, the climate change impact on 
landslide susceptibility is provided only for 12-hour rain
fall events with 10-, 50-, and 100-year return intervals 
for illustration purposes. The overall conclusions made 
for 12-hour rainfall events also applies to other durations, 
6-hour and 24-hour.

Figure 10 shows the effect of climate change on the 
Pf (L, I) values for 12-hour rainfall events with 10-, 50- 
, and 100-year return intervals by providing present 
and future conditions separately. It can be seen that 
the Pf (L, I) values appear to be much higher in case of 
long return intervals, and Pf (L, I) values increase due 
to the climate change for each return interval. The ana
lyses showed that the increase in Pf (L, I) due to climate 
change can be up to 22.3%, 16.9%, 13.5% at certain parts 
of the study area for rainfall events with 10-, 50-, and 
100-year return intervals, respectively. In Table 5, the 
mean difference (D), and mean relative difference 
(Drel.) in the Pf (L, I) values due to climate change are 
provided for each return interval over different ranges 
of slopes. It is observed that the D and Drel. are larger 
in case of 10-year return interval, and lower for 50- 
and 100-year return intervals. This is attributed to the 
fact that the steep slopes are already very close to fully 
saturated condition at long return intervals at the 

Table 3. Mean values of Pf (L) for different slope ranges over the 
entire area.

Slope range ◦
L = 6 hr. L = 12 hr. L= 24 hr.

Present Future Present Future Present Future

25–30 0.29 0.4 0.06 0.1 0.03 0.03
30–35 1.65 2.03 1.06 1.29 0.83 0.99
35–40 7.47 8.96 6.5 7.81 5.35 6.44
40–45 22.19 25.5 20.68 23.66 18.23 21.18

Table 2. Mean difference D and mean relative difference Drel. in 
the Pf (L) over the entire area due to climate change.

Slope range ◦
L = 6 hr. L = 12 hr. L= 24 hr.

D Drel. D Drel. D Drel.

25–30 0.11 103.52 0.04 226.12 0.01 124.91
30–35 0.38 15.88 0.24 14.25 0.15 15.00
35–40 1.49 18.59 1.31 18.83 1.09 20.34
40–45 3.31 16.10 2.98 15.62 2.94 16.87

Table 4. Extent of zones with Pf (L) . P f ,limit over the entire area for different durations with the proportions of moraine and fluvial 
deposits in the parentheses.

P f ,limit (%)

L = 6 hr. L = 12 hr. L= 24 hr.

Present Future Present Future Present Future

10 112.85 131.33 94.7 114.95 81.98 97
(105.81–7.04) (122.53–8.8) (91.37–3.33) (109.66–5.29) (79.57–2.41) (93.69–3.31)

20 47.68 65.34 36.63 49.63 24.21 37.38
(44.92–2.76) (61.12–4.22) (36.54–0.09) (48.35–1.28) (24.21–0) (36.93–0.45)

30 11.63 23.67 0.76 12.38 0 2.44
(10.5–1.13) (21.81–1.86) (0.76–0) (12.38–0) (0–0) (2.44–0)

40 2.64 4.08 0 0 0 0
(2.21–0.43) (3.43–0.65) (0–0) (0–0) (0–0) (0–0)

Note: Unit: 10− 2km2.
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present condition. Larger precipitation can just make 
the slope fully saturated, resulting in considerably less 
change in Pf (L, I) values.

The mean values of Pf (L, I) over different ranges of 
slopes are provided in Table 6 for each return interval. 
It can be seen that the mean Pf (L, I) increases as the 
return interval increases, for each slope range. Table 6 
reveals that the climate change increases the mean 
Pf (L, I) and results in more susceptible slopes for all 
slope ranges. From both Tables 5 and 6, it can be seen 
that the change in mean Pf (L, I) is higher for 10-year 
return interval events. However, the mean Pf (L, I) 

values reach the highest value for 100-year return inter
val events. Additionally, it is observed the Pf (L, I) values 
over a slope range may have a very wide range. That is, 
two identical slopes might have different Pf (L, I) values. 
This is attributed, among others, to the observation that 
the excess rainfall due to fully saturation is redistributed 
to the surrounding neighbouring regions. Therefore, a 
slope might receive more water than an another slope 
with the same inclination. Table 7 shows the extent of 
zones with Pf (L, I) . P f ,limit for both present and future 
climate conditions for 12-hour rainfall events of 10-, 50- 
, and 100-year return intervals. The extents of moraine 
and fluvial deposits are provided in the parentheses. 
From Table 7, it is observed that the extent of suscep
tible zones increases as the return interval increases 
and 100-year return interval has the largest extent 
regardless of P f ,limit. The impact of climate change on 
the extent of zones can be clearly seen in Table 7. For 
example, climate change increases the extent of zones 
with Pf (L, I) . 40% by a factor of 1.5 – 2.7 depending 
on the return interval.

Table 5. Mean difference D and mean relative difference Drel. in 
Pf (L, I) for 12-hour rainfall events over the entire area due to 
climate change.

τ = 10 yr. τ = 50 yr. τ = 100 yr.

Slope range ◦ D Drel. D Drel. D Drel.

25–30 0.15 176.68 0.12 31.66 0.13 28.08
30–35 0.69 47.80 0.47 22.02 0.80 17.13
35–40 3.02 31.78 2.04 17.54 2.98 19.89
40–45 4.57 17.74 1.96 6.03 1.36 4.07

Figure 10. Pf (L, I) for 12-hour rainfall events with 10-year (a, b), 50-year (c, d), and 100-year (e, f) return intervals for present (a, c, e) 
and future (b, d, f) climate conditions.
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5. Overall discussion

This study proposed a novel implementation of prob
abilistic framework to quantify the impact of climate 
change on landslide susceptibility by accounting for 
multiple rainfall events. The framework accounts for 
both the uncertainties in landslide and climate models 
by Monte Carlo method. The probabilistic framework, 
Equation (6), combines the results from the climate 
and landslide models by integrating the landslide sus
ceptibility estimates over different intensity values 
with varying return intervals for a given duration. By 
doing so, the contributions of rainfall events to the cli
mate change impact were scaled with respect to their 
probability of occurrence. Otherwise, climate change 
impact on landslide susceptibility would likely be over
estimated by using only extreme rainfall events with 
long return intervals despite their low occurrence prob
ability (see Section 4.2).

The proposed framework mitigates bias in climate 
change impact studies resulting from less likely high 
intense rainfall events and provides more robust and 
reliable predictions. This framework leads to accurate 
quantification of climate change impact and detection 
of critical zones with a higher increase in the probability 
of landslide initiation under climate change. As a result, 
it offers valuable insights and provides a basis to miti
gate the upcoming landslide risk and strengthen the 
resilience and adaptive capacity of society under climate 
change. Moreover, such analyses can be of great advan
tage in engineering practice by better identifying land
slide-susceptible areas in the light of changing climate, 

supporting areal planning, and facilitating infrastruc
ture development.

This study quantified the climate change impact for 
6-, 12-, and 24-hour rainfall events by the proposed 
probabilistic framework (Section 2.3) and provided 
Pf (L) maps for present and future climate conditions 
(Figure 8). The increase in Pf (L) due to climate change 
can be up to 9.7%, 8.4%, and 3.7% for 6-, 12-, and 24- 
hour rainfall events, respectively (Figure 9). For both 
moraine and fluvial deposits, a considerable increase 
in the extent of susceptible zones based on different 
values of P f ,limit (Table 4) was observed. In addition, cli
mate change impact was also illustrated by 12-hour 
rainfall events of 10-, 50-, and 100-year return intervals 
(Figure 10). This may be particularly important for 
engineering structures such as infrastructures, build
ings, or any other project designed based on extreme 
rainfall events. The study revealed that climate change 
increases both Pf (L, I) (Tables 5 and 6) and the extent 
of susceptible zones (Table 7). For 12-hour rainfall 
events of 10-, 50-, and 100-year return intervals, the 
increase in Pf (L, I) due to climate change can be up to 
22.3%, 16.9%, and 13.5%, respectively. The results of 
this study also showed that the moraine soil type 
poses a higher risk than the fluvial deposits under the 
climate change (Tables 4 and 7). This is due to the mor
aine being more located on steep slopes than fluvial 
deposits.

There are many sources of uncertainty in the climate 
modelling chain, such as biases in RCMs and the driving 
GCMs, assumptions about future emissions, the limited 

Table 6. Mean values of Pf (L, I) for 12-hour rainfall events for different slope ranges over the entire area.

Slope range ◦
τ = 10 yr. τ = 50 yr. τ = 100 yr.

Present Future Present Future Present Future

25–30 0.16 0.31 0.52 0.64 0.62 0.76
30–35 1.44 2.13 3.39 3.86 3.77 4.57
35–40 9.77 12.79 16.86 18.89 18.51 21.49
40–45 28.74 33.31 36.87 38.84 38.67 40.02

Table 7. Extent of zones with Pf (L, I) . P f ,limit over the entire area for 12-hour rainfall events of different return intervals with the 
proportions of moraine and fluvial deposits in the parentheses.

P f ,limit (%)

τ = 10 yr. τ = 50 yr. τ = 100 yr.

Present Future Present Future Present Future

10 136.98 162.69 195.92 213.87 211.35 246.75
(128.91–8.07) (150.52–12.17) (179.42–16.5) (195.91–17.96) (193.96–17.39) (224.73–22.02)

20 73.61 97.65 132.26 141.78 140.45 161.91
(69.72–3.89) (91.82–5.83) (123.77–8.49) (131.51–10.27) (130.57–9.88) (149.87–12.04)

30 35.3 58.73 86.47 99.27 98.59 115.71
(33.67–1.63) (55.57–3.16) (81.32–5.15) (92.66–6.61) (92.12–6.47) (108.18–7.53)

40 5.18 14.00 24.39 37.14 33.59 53.67
(4.47–0.71) (12.53–1.47) (21.54–2.85) (33.72–3.42) (30.21–3.38) (49.7–3.97)

Note: Unit: 10− 2 km2.
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size of the model ensemble, uncertainties associated 
with precipitation observations, and the approximate 
formula used to calculate IDF curves (Equation (1)). 
When it comes to uncertainties associated with climate 
models, previous model evaluation done in connection 
to statistical downscaling has indicated that GCMs are 
able to reproduce the large-scale conditions found in 
nature that are important to local climate variations 
(Benestad 2021).

The current study included only the high emission 
scenario RCP8.5, which is based on the assumptions 
of no climate policy, high population growth and slow 
technological development, resulting in continued 
increases of greenhouse gases throughout the twenty- 
first century. The results presented here can therefore 
be interpreted as high-end estimates of change. Other 
scenarios based on assumptions of decreased emissions 
show smaller changes in the precipitation and thus 
would have given a smaller change in the landslide sus
ceptibility. Similarly, the projected landslide suscepti
bility was provided only for the end of the century 
(2071–2100). Projections of landslide susceptibility to 
the near future (2021–2050) were also performed. The 
results showed smaller increase in the probability of 
landslide initiation over the entire area compared to 
the values at the end of the century (2071–2100).

This study is promising in the way forward to 
quantification of the climate change impact by account
ing for the likelihood of rainfall events. Due to the com
plexities in both landslide and climate modelling chains, 
there exist several shortcomings that should be 
addressed in future studies for a more complete and 
comprehensive landslide susceptibility assessments. 
The shortcomings can be listed as follows: 

. In the landslide susceptibility analyses, the complex 
geological and environmental processes, snowmelt
ing, vegetation, and areal planning were not 
accounted for due to the limitations of the physical- 
based model and the high level of complexities 
involved. It should be noted that these processes, 
such climate driven changes in natural disturbance 
(Scheidl et al. 2020) or snow melting may signifi
cantly affect the landslide susceptibility. The current 
study provided only a partial view of climate change 
impact on landslide susceptibility, lacking of the con
tribution of these complex processes.

. Calibration of the landslide susceptibility model is 
based on a conventional deterministic approach 
with an objective junction, and several assumptions 
were made due to the lack of information on soil par
ameters, initial conditions, and incomplete landslide 
inventory. More advanced probabilistic calibration 

methods accounting for spatial variable model par
ameters (e.g. Depina, Oguz, and Thakur 2020; Luo 
et al. 2022) can be also utilised depending on the 
availability of information on soil parameters, and 
completeness of landslide inventory. Different cali
bration strategies could lead to different parameter 
sets, leading to different levels of increase in Pf (L) 
and Pf (L, I) due to climate change.

. Due to the insufficient knowledge on the hydrological 
conditions and the lack of laboratory and field test, 
the hydrological parameters, KS and D0 were deter
mined by conducting a parametric hydrological 
analysis (Appendix A) and by considering the values 
reported in the literature. Effects of varying KS and 
D0 on the probability of landslide initiation have 
been investigated. Overall findings of the current 
study only differ only when hydraulic parameters 
result in extremely slow or fast infiltration.

. It should be noted that this study did not account for 
the spatial variability of the geotechnical and hydro
logical model parameters, which may show strong 
variability through space (e.g. Jiang et al. 2022; Lei 
et al. 2023; Oguz, Depina, and Thakur 2022). Instead, 
these parameters were assumed homogeneous within 
a single geological unit and the variability of the 
model parameters has been modelled with a single 
random variable approach using the Monte Carlo 
method.

. The Euro-CORDEX ensemble is relatively small in 
terms of providing robust values for the future and 
the small sample size may lead to an unrepresenta
tive, narrow and skewed view of the range of possible 
outcomes of climate change (Mezghani et al. 2019). 
Ideally, future regional projections should include 
empirical-statistical downscaling or hybrid down
scaling as well as RCM results to enable including a 
larger ensemble of GCMs and thus provide more 
entrusted results (Benestad 2021). However, empiri
cal-statistical downscaling of precipitation and in 
particular the precipitation intensity is challenging 
due to the large local and stochastic variations. 
Research is nevertheless ongoing with the aim to 
find good ESD-based and hybrid downscaling sol
utions for precipitation statistics.

. This study estimated the local effects of climate change 
based on dynamically downscaled data that had not 
been bias-corrected. To address potential issues related 
to biases, we opted for a delta change approach (e.g. 
Hay, Wilby, and Leavesley 2000), where the present 
conditions were represented by observations and future 
conditions were estimated by adding the change from 
RCM simulations. While bias correction might have 
given a more physically consistent picture of the 
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precipitation climate of the future, fewer bias corrected 
RCM simulations were available, and in the context of 
this study we considered the benefit of a larger ensem
ble of climate model simulations greater than the poten
tial advantage of bias correction.

. In this study, climate-dependent IDF curves were 
developed only for one weather station, which was 
found to be reliable with long observation data. There
fore, rainfall events were modelled as constant over 
the entire area in the TRIGRS model. Accounting 
spatial variability of the precipitation may affect the 
landslide susceptibility (e.g. Shou and Yang 2015) 
and more realistic results could be obtained.

6. Summary

The changes in the rainfall patterns are commonly 
known to a certain degree for different spatial and tem
poral scales. However, the effect of these changes on 
landslide susceptibility was rarely quantified explicitly. 
Such quantification will provide a basis for the devel
opment of mitigation strategies for landslide risk 
under climate change. This study presented a frame
work for the quantification of climate change impact 
on rainfall-induced landslide susceptibility. The frame
work consists of climate and landslide modelling 
chains. One of the novelties of the study comes from 
incorporating a simple semi-empirical formulation to 
estimate the approximate daily and sub-daily rainfall 
statistics, and utilising these statistics in the landslide 
modelling chain. Additional novelties include the 
implementation of a probabilistic framework to inte
grate the two modelling chains and obtain the climate 
change impact by accounting for multiple rainfall 
events of the same duration, instead of only investi
gating extreme rainfall events. The proposed probabil
istic framework accounts for the likelihood of rainfall 
events for a given duration rainfall and scales the con
tributions of these intense rainfall events by their prob
ability of occurrences.

The current study quantified the climate change 
impact on rainfall-induced shallow landslide suscepti
bility for a landslide-prone region located in central Nor
way. The climate change impact was quantified for 
varying duration rainfall events with the proposed prob
abilistic framework. Additionally, the impact was also 
quantified for extreme rainfall events of long return 
intervals. The results demonstrated that the landslide 
susceptibility over the study area increases due to climate 
change with higher probabilities of landslide initiation, 
and larger landslide-susceptible extents. The proposed 
probabilistic framework provided a more realistic basis 

for the evaluation of the climate change impact on land
slide susceptibility without the bias due to extreme rain
fall events with low probability of occurrence.
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Appendix. Parametric hydrological analysis

Hydraulic parameters, such as conductivity, K [ms− 1] and 
diffusivity, D [m2 s− 1], have very high importance in landslide 
susceptibility assessment because these parameters signifi
cantly affect the transient pore pressure build up, expressed 
in Equation (2), during the infiltration process. In this 
paper, the saturated hydraulic parameters, KS and D0, were 
used because the saturated initial condition was assumed in 
TRIGRS model. These parameters depend on the soil texture, 
soil density, percentage of voids, grain size and distribution, 
etc., and significantly vary through space, even in the same 
geology unit. In the literature, a very high coefficient of vari
ation, CoV which is the ratio of standard deviation to mean, 
was reported for KS, such as 48.5–65.9% (Hu et al. 2008), 
77.3% (Usowicz and Lipiec 2021) based on the tests on a 
very large number of samples. Similarly, Liu and Wu (2008) 
reported the high variability of KS and D0, and stated that 
D0 values reported in the literature are in the range of (10– 
500) KS.

A parametric hydrological analysis was performed via 
TRIGRS model to understand the effect of hydrological par
ameters on the transient pore pressure response. In the 

parametric study, KS values were used in the range from 
1.0 · 10− 6 m/s to 1.0 · 10− 4 m/s with the ratio of 
D0/KS [ [10, 200]. For illustration purpose, the results of 
1.5 m thick soil with 30◦ inclination are shown, although 
different slopes with varying thicknesses have been also inves
tigated. In TRIGRS model, the initial ground water table was 
assumed at the bottom of the soil layer. The rainfall was simu
lated as a uniform spatial event during the rainfall duration 
and the pore pressure profiles were obtained at the beginning 
and at the end of the rainfall events.

For this parametric hydrological analysis, the IDF curves 
for the present climate condition were obtained by examining 
the historical time series from the weather station, Østås i 
Hegra. For the future climate condition, end of the twenty- 
first century (2071–2100), the ad-hoc IDF curves were 
obtained by a simple approach involved multiplying μ in 
Equation (1) with 1.4 to achieve a typical climate change scal
ing factor recommended by the Norwegian Climate Service 
Center (Dyrrdal and Førland 2019). This estimate of rec
ommended climate change scaling factor is also in accordance 
with a simple and crude temperature-based scaling study for μ 
(Benestad et al. 2016). The rainfall depths are provided in  
Figure A1(a), and rainfall intensities are provided in Figure 

Figure A1. IDF curves for present conditions based on observations and ad-hoc IDF curves for future climate conditions using 1.4 
climate change scale factor (return intervals, τ, are stated into boxes): (a) rainfall depth (b) rainfall intensity.

Figure A2. Effect of duration, L, on the transient pore pressure head response where KS = 5.0 · 10− 5 m/s, and D0/KS = 50: (a) 6-hour, 
(b) 12-hour, (c) 24-hour.
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A1(b) by dividing the rainfall depths by corresponding rainfall 
durations.

The analysis showed that different duration rainfall events 
of the same return interval, based on IDF curves, result in 
almost the same transient pore pressure response (Figure 
A2). This is attributed to the fact that the rainfall intensity 
Figure A1(b) changes with respect to the duration. Being 
longer duration and corresponding lower rainfall depths com
pensate for each other and similar transient pore pressure 
responses are obtained for different duration rainfall events 
of same return intervals.

Figure A3 shows the effect of hydrological parameters, KS 
and D0, on the transient pore pressure response. For the illus
tration purpose, the results with KS values of 1.0 · 10− 5, 
5.0 · 10− 5, and 1.0 · 10− 4 m/s and D0/KS values of 10, 50, 
100 are provided for 12-hour rainfall events of 10-, 50-, and 
100-year return intervals (Figure A3). It can be seen that 

higher KS does not result in faster pore pressure build up 
because the water infiltrates faster into the soil and drains 
from the bottom. Figure A3 shows that a higher ratio of 
D0/KS results in a faster transient pore pressure response. 
The difference between the responses to different return inter
vals becomes wider when the ratio of D0/KS increases or KS 
decreases.

The analyses showed that employing very low or very high 
values of D0/KS results in no considerable change in transient 
pore pressure response to rainfall events at present and future 
climate conditions. That is, low values of D0/KS results in very 
slow transient pore pressure especially for high values of KS, 
and high values of D0/KS cause a fully saturation condition 
even at low intensity values. Therefore, employing such values 
of D0/KS would result in similar transient pore pressure 
response and similar landslide susceptibility assessments at 
present and future climate conditions.

Figure A3. Effect of hydrological parameters on the transient pore pressure head response to a 12-hour rainfall event with return 
intervals of 10-, 50-, 100-year: (a, d, g) KS = 1.0 · 10− 5 m/s, (b, e, h) KS = 5.0 · 10− 5 m/s, (c, f, i) KS = 1.0 · 10− 4 m/s with D0/KS values 
of (a, b, c) 10, (d, e, f) 50, (g, h, i) 100.
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