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Abstract

Reliable geotechnical site characterization and geohazard assessment are critical for bridge foundation design and manage-
ment. This paper explores existing and emerging artificial intelligence-machine learning methods (AI-ML) transforming geo-
technical site characterization and scour assessment for bridge foundation design and maintenance. The prevalent ML
techniques applied for subsurface characterization are reviewed, and step-by-step methodologies for stratigraphy classifica-
tion, borehole interpretation, geomaterial characterization, and ground modeling are provided. The ML techniques for maxi-
mum scour depth prediction are reviewed, and a simple ML methodology is proposed to provide a more reliable tool for
scour depth estimation for implementation in practice. Also, a novel deep learning approach, with a detailed implementation
description, is recommended for real-time scour monitoring and assessment of existing bridges. The challenges with database
design and data processing for ML modeling, model optimization, training and validation, and uncertainty assessments are dis-

cussed, and innovative techniques for addressing them are reviewed.
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Reliable geotechnical site characterization and geoha-
zard assessment are critical elements in bridge infrastruc-
ture design and management. Scour, a major geohazard
affecting bridges over waterways, is the main cause of
failure in the United States and worldwide (/-3). In this
paper, we review emerging artificial intelligence (AI) and
machine learning (ML) technologies that are transform-
ing geotechnical site characterization and scour assess-
ments for bridge foundation design and maintenance.
Al, a versatile field encompassing ML, data analytics,
and computational modeling, has catalyzed transformative
change across various industries. Geotechnical engineering
is no exception, benefiting from AI’s capabilities to extract
valuable insights, enhance predictive accuracy, and optimize
decision-making processes, considering geohazards. This
fusion of geotechnical engineering and Al has far-reaching
implications, promising safer and more reliable infrastruc-
ture, cost savings, and minimized environmental impact.
There are state of the art reviews on ML/deep learning
(DL) applications in geotechnical engineering, including
Yousefpour and Fallah’s (4) on ML applications in

geotechnics, Zhang et al.’s (5) on DL applications in geo-
technical engineering and ML modeling of soil properties
(6), Dikshit et al.’s (7) on geohazard modeling, Tehrani
et al.’s (8) landslide studies and recently Phoon and
Zhang’s (9) review on the future of ML in geotechnics.
The objective of this discussion is to highlight the
recent advances and underscore the importance of con-
tinued research and innovation in harnessing the full
potential of AI-ML for safer, more resilient, and cost-
effective bridge foundations. The paper is organized as
follows. The next section introduces the synopsis on Al
and ML. We then present subsurface characterization
and scour assessment using ML. We also provide recom-
mendations with step-by-step implementation methods
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for applications in practice. We end the paper with a
conclusion section.

Synopsis on Artificial Intelligence
and Machine Learning

Al and ML represent two dynamic and interrelated fields
at the forefront of modern technology. Al is a broader
concept, encompassing the development of intelligent
systems capable of tasks traditionally requiring human
intelligence, such as problem solving, language under-
standing, and decision making. ML, on the other hand,
is a subset of AI focused on the development of algo-
rithms that enable computers to learn from and make
predictions or decisions based on data.

Al and ML have seen unprecedented growth and
application across various industries. In the domain of
Al, natural language processing (NLP) has enabled
conversational AI and language translation (/0).
Computer vision has transformed image and video
analysis (/1), while reinforcement learning has empow-
ered robots and autonomous systems (/2). Meanwhile,
ML techniques, including supervised learning, unsuper-
vised learning, and reinforcement learning, have revolu-
tionized data-driven decision-making processes in fields
ranging from health care and finance to engineering
applications (13, 14). The synergy between Al and ML
is evident in their iterative and data-centric approach.
ML algorithms learn patterns from data and improve
their performance over time, aligning with the Al goal
of creating intelligent, adaptive systems. Additionally,
the availability of vast data sets and increased comput-
ing power has fueled the advancement of Al and ML
applications.

Deep learning employs artificial neural networks
inspired by the human brain to solve complex problems
(15). DL has revolutionized Al by enabling break-
throughs in computer vision, natural language process-
ing, and speech recognition (/6). Convolutional neural
networks (CNNs) (/7) have enhanced image recognition,
while recurrent neural networks (RNNs) (/8) and trans-
former models (/9) have elevated language understand-
ing and generation to unprecedented levels. Generative
Al is the most recent advancement in this field, creating
systems capable of generating content, such as images,
text, music, and more, often with remarkable creativity.
At its core, generative Al seeks to enable machines to
produce novel, human-like output. The driving force
behind many generative Al models is the use of neural
networks, particularly generative adversarial networks
(GAN:Ss) (20).

In civil engineering, AI-ML has been used mostly in
structural health and performance monitoring (2/-23),
design optimization (24), predictive maintenance (295),
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Figure I. Machine learning survey: What are the machine
learning applications that can transform value for our industry in
the next 10years? (Select all that apply).

construction automation and management (//, 26),
transport planning (27), and in various aspects of geo-
technical engineering (4, 5).

Subsurface Characterization Using ML

Subsurface characterization, including stratigraphic con-
figuration and the associated geotechnical properties, has
long been a challenge in geotechnical practice. Because
of the geological processes leading to the compounded
deposition and subsequent changes of geomaterials,
including layering, each stratum exhibits variation from
point to point within a volume (28). Nevertheless, the
identification of subsurface stratification and the charac-
terization of spatially varying soil and rock properties
with the limited availability of site investigation informa-
tion are indispensable for site characterization and fol-
lowing design analyses.

The TC309 (International Society for Soil Mechanics
and Geotechnical Engineering [ISSMGE]’s Technical
Committee for Machine Learning and Big Data) carried
out an online survey in 2019, receiving 114 responses.
The survey highlighted that machine learning is expected
to have a significant impact on geotechnical site charac-
terization among others. Site characterization is one of
the leading areas where machine learning can transform
practice over the next 10 years (Figure 1).

Stratigraphy Classification

Stratigraphy classification is essential in site investigation,
as it provides the necessary knowledge on the geological
body (29). For example, the significance of the stratigraphy
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classification might be observed in the failure of a slope
consisting of multiple strata, in which the failure is often
dominated by the spatial distribution of the weak stratum
(30). However, the subsurface stratigraphic configuration
at a site is hard to characterize accurately because of the
complexity and inherent spatial variability of the strata
and the limited availability of exploration data.

The essence of stratigraphic modeling is a process of
interpolating and predicting strata of the whole area of
interest from a limited amount of known data (37). It gen-
erally treats geological units as discrete variables, such as
stratigraphic classes or rock classes, and thus formulates
the modeling task as a classification problem correspond-
ing to discrete variables. DL and ML are the methods
that learn a model with statistical characteristics from
known data and use the model to make judgments and
predictions about new scenarios. In this way, the princi-
ples of stratigraphic modeling fit with DL and ML (32).

In recent years, there has been a boom in research on
the stratigraphy classification based on DL or ML. As
listed in Table 1 (33), the possibility of various machine
learning algorithms in handling stratigraphy classifica-
tion tasks has been verified, from shallow classification
algorithms, such as convolutional neural networks
(CNN), eXtreme gradient boosting (XGBoost), support
vector machines (SVM), decision tree (DT), random for-
est (RF), and maximum likelihood, to variants of neural
networks, such deep feed-forward neural networks
(DFNN), RNNs, graph neural networks (GNN), and
GAN. The modeling ideas of these methods may be
divided into stratigraphy classification methods based on
the image analysis and those based on the borehole
interpretation.

The above studies have established the foundation for
the application of machine learning to stratigraphy classi-
fication. In addition, they also reveal the characteristics
of different approaches. Traditional machine learning
classifiers are suitable for learning tasks with small sam-
ples, while DL algorithms dominated by neural networks
generally require large amounts of training data to obtain
better learning results. However, it is always troublesome
to acquire and label geological data. The samples are too
sparse to represent the feature space effectively, thus lim-
iting to some extent the performance of DL models in
geological reconstruction tasks.

Image Analysis

The depositional stratigraphic relationships can be quan-
titatively reflected in a training image (TI), which can be
defined as a conceptual representation of the expected
subsurface heterogenecities in the area of interest.
Stochastic conditional simulation methods using TIs,
for example, multiple-point statistics (34-46) and

Summary of DL and ML Algorithms Used in Stratigraphy Classification

Table I.

Data Input Target

DL or ML algorithm

Study

Stratum type
Lithofacies

Strata

Boreholes

Multiple-point geostatistics
CNN

Mariethoz and Caers (34)
Bai and Tahmasebi (35)

Shi and Wang (36)

Pixel value
Strata

Training image of flow

Stratum type

Training image of geological

XGBoost

cross sections
Wells, geology map, sections

Well-logs

Sedimentary facies
Sedimentary facies
Rock type of iron ore

Log parameters
Position, mineral components
Strata, rock, gravity, and

Position

Drill holes

Decision tree

SVM
SVM
RF

Smirnoff et al. (37)

Wang et al. (38)
Adeli et al. (39)

Mineralization type

Boreholes, sections, geological

Xiang et al. (40)

magnetic
Position, orientation

map

Wells

Strata

Maximum likelihood

Gaussian process

Gongalves et al. (41)

Iso-value of potential field

Rock types

Position, orientation

Orientation measures

Goncgalves et al. (42)
Jia et al. (43)

Position, residual density, and

Borehole and 3-D inversion

Stacking method

magnetic susceptibility
Graph adjacency matrix, graph

model
Borehole, orientation

Scalar field, rock

GNN

Hillier et al. (44)

node matrix
Coordinates, elevation

Stratum type

Boreholes

RNN

Zhou et al. (45)

graph neural network; RNN = recurrent neural

machine learning; CNN = convolutional neural network; SVM = support vector machine; RF = random forest; GNN =

deep learning; ML =

Note: DL

network.



Transportation Research Record 00(0)

iterative convolution XGBoost (47), have been devel-
oped to depict stratigraphic connectivity between soil
deposits. These image-based stochastic simulation
algorithms have been successfully applied to tackle
practical geotechnical problems, for example, reclama-
tion and slope stability (48).

A TI is an ensemble of prior geological knowledge,
which enables quantitative incorporation of subjective
geological interpretation of a studied domain, and it can
be directly obtained from a nearby site or previous proj-
ects with similar geological settings. The idea of TI is
appealing to geological and geotechnical practitioners as
it can effectively leverage on prior geological knowledge
in a quantitative manner and combat the problem of
scarce geological data often encountered in the develop-
ment of subsurface geological cross sections. It should be
noted that the performance of stochastic simulation
methods for subsurface geological modeling can be
greatly influenced by TI particularly when site-specific
measurements are limited, and an improper TI may lead
to geological realizations incompatible with observed
data or even false interpretation of geological processes
(49, 50). This underscores the importance of selecting a
proper TI for stochastic simulation methods.

Image-based stochastic simulations learn stratigraphic
features from a single training image and leverage on the
extracted patterns to yield an alternative representation
of subsurface stratigraphy while conditioning on available
site-specific data (e.g., slope outcrops or borehole logs).
A training image can be viewed as a prior ensemble of
local geological knowledge and experience (e.g., inter-
relationships between soil types and orientations of soil
layer boundaries) with the required spatial scale at the site
of interest. More specifically, a qualified training image is
a numerical representation of believed stratigraphic het-
erogeneities. Although it does not necessarily enclose all
the detailed stratigraphic features at a target site, it should
exhaust major repetitive stratigraphic relationships and
structures (34). Training images essentially serve as effec-
tive supplements to overcome challenges associated with
data sparsity, which is an intrinsic issue in geotechnical
site investigation and geological modeling.

Shi and Wang (36) proposed a framework for the condi-
tional simulation of subsurface stratigraphy, based on the
typical cross sections for weathered granite and tuff slopes
in Hong Kong. Subsequently, the proposed framework was
applied to delineate subsurface stratigraphy and quantify
associated stratigraphic uncertainty using real slope cross
sections in Hong Kong. In the context of this framework,
the inputs are the images of the geological cross sections.
The geological cross section predicted by this framework is
dependent on both the training image adopted (i.e., a prior
geological model) and site-specific measurements (i.c.,

likelihood information). There is a balance between the
prior geological model and site-specific measurements.
Prior geological knowledge governs the posterior subsur-
face system when available measurements are limited.
However, the influence of a training image weakens as the
number of site-specific measurements increases (or likeli-
hood information strengthens), and the final predicted geo-
logical cross section will be mainly dominated by site-
specific data when many measurements are taken from a
specific site. The basic structure of this proposed frame-
work can be summarized with the following steps.

Step I. Collecting Training Images. The first step for estab-
lishing a training image database is to collect many geo-
logical cross sections from different sources and digitalize
them using a consistent format. The potential training
images can be obtained from four different sources: 1)
the delineation of subsurface geological cross sections is a
must for every geotechnical project, and it is, therefore,
natural to collect geological cross sections developed
from previous projects and use them as training images;
2) conceptual geological models developed by engineer-
ing practitioners, or even hand drawn by experienced
geologists, can also be used as training images; 3) a train-
ing image can also be simulated using different generative
models such as object-based, process-based, and process-
mimicking models, for example, Mariethoz and Caers
(34); and 4) training images can snapshots taken directly
from experiments using small-scale models.

Step 2. Categorizing Training Images. To facilitate the subse-
quent selection of training images for subsurface strati-
graphy, all the collected training images may be further
classified into different categories in accordance with
their geological origin, location, and application scenar-
i0s. After determining the appropriate mode of origin or
deposit type, a collected training image can be further
categorized to different subgroups based on locations.
Training images nearby are deemed to share similar local
depositional environments. Finally, training images col-
lected from similar application scenarios (e.g., slope sta-
bility analysis) should be grouped together as different
application scenarios might focus on the accurate deli-
neation of different stratigraphic patterns.

Step 3. Selecting Training Images. In the absence of training
image databases, a candidate training image to be obtained
from nearby sites or projects with similar geological set-
tings can be adopted, which has achieved preliminary suc-
cess in site planning and the appraisal of subsurface
stratigraphy (47). However, the procedure for identifying a
qualified training image can be greatly simplified when a
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suitable training image database is available. For a specific
site with only slope outcrops available, a potential training
image may be obtained directly from a training image cate-
gory, which shares a similar geological origin, location,
and application scenario with the concerned slope.
Therefore, a compatible training image category can read-
ily be set up by incorporating cross sections that are col-
lected from nearby sites. Note that geological processes are
invaluable when attempting to compile a database of train-
ing images and the geological process has been included in
geological origins.

Step 4. Ensemble Learning Subsurface Stratigraphy Using
Training Image Database. Each candidate training image
can be viewed as an eigen-pattern set of the subsurface
system and only represents a specific geological config-
uration under a given geological origin and application
scenario. The combination of multiple training images
can be considered an “orthogonal decomposition” of the
subsurface system and enables a comprehensive apprai-
sal of subsurface geological patterns and stratigraphic
uncertainty. Ensemble learning bypasses the selection of
a single best prior geological model or training image for
subsurface stratigraphy but combines diverse strati-
graphic patterns from multiple prior geological models
for a unit characterization of stratigraphic uncertainty.
This is particularly important for developing subsurface
geological cross sections when only limited site-specific
data are available, and it further emphasizes the necessity
of establishing a training image database for subsurface
stratigraphy.

Step 5. Simulating Subsurface Stratigraphy and Quantifying
Stratigraphic Uncertainty. The subsurface stratigraphic con-
figuration can be simulated using the image-based sto-
chastic conditional methods, such as the multiple-point
statistics (34) and iterative convolutional XGBoost algo-
rithm (47). Essentially, the image-based stochastic condi-
tional method relies on a flexible data event template to
retrieve compatible stratigraphic patterns from a limited
set of training images for establishing cumulative distri-
bution function (CDF) curves, which are subsequently
used for sampling and determination of soil types at
unsampled locations. Then, a geological cross section or
realization is completed. Based on the simulated strati-
graphic configurations, the stratigraphic uncertainty can
be quantified using the information entropy.

Borehole Interpretation

The subsurface stratigraphic configuration at a project
site is usually obtained through spatial interpolation of
the site-specific measurements (e.g., boreholes or cone
penetration tests), coupled with local geological

experience (57). Although linear interpolation may be
conventionally used to develop subsurface geological
cross sections from limited scattered data, a follow-up
design or analysis based on this deterministic interpreta-
tion method might be considered a poor decision (e.g.,
Scheidt et al. [52]), particularly when the stratigraphic
uncertainty is prevailing. To overcome the shortcomings
of the linear interpolation, many techniques and methods
have been developed to describe, simulate, and model
strata, such as the octree model (53), B-rep model (54),
geochron concepts (55), and tri-prism model (56).
However, these methods rely on the guidance of expert
knowledge and experience in the selection of assump-
tions, parameters, and data interpolation methods,
which are subjective and limited (57). Assumptions about
the borehole data distribution must be made, and it is
difficult to evaluate the stratum simulation results
effectively.

The recent advance in emerging machine learning
methods provides a fresh perspective on the development
of subsurface geological cross sections. For example,
Porwal et al. (58) used radial function and neural net-
work to evaluate potential maps in mineral exploration.
Zhang et al. (59) predicted karst collapse based on the
Gaussian process. Rodriguez-Galiano et al. (60) con-
ducted a study on mineral exploration based on a deci-
sion tree. Gaurav (6/) combined machine learning,
pattern recognition, and multivariate geostatistics to esti-
mate the final recoverable shale gas volume. Sha et al.
(62) used a convolutional neural network to characterize
unfavorable geological bodies and surface issues. It is
noted that although the spatial distribution of strata can
be characterized effectively with these approaches, the
stratigraphic uncertainty is often ignored.

To this end, various machine learning methods, such
as the Bayesian compressive sampling (63), the artificial
neural network (64) and the multilayer perceptron neural
network (65), have been advanced. These machine learn-
ing methods are appealing to practical engineers as they
can effectively combine limited site-specific measure-
ments and prior geological knowledge. Note that the
stratigraphy’s interpolation accuracy mainly depends on
the number of measurements collected. In addition, to
characterize the stratigraphic configuration and associ-
ated uncertainty, the geostatistical methods, Markov-
based simulation methods (e.g., Markov random field
and coupled Markov chain) (66—69) and conditional ran-
dom field-based simulation methods (29, 70), have been
developed to derive probabilistic stratigraphic relation-
ships between observed data for spatial interpolation of
soil boundaries. The successful applications of those
methods rely heavily on the accurate estimation of tran-
sition probabilities or spatial correlation. Directly esti-
mating transition probabilities or spatial correlation



Transportation Research Record 00(0)

from site-specific measurements can be complex as mea-
surements are usually sparse and limited.

Note that the stratigraphic modeling with multi-source
data fusion is expected to reduce the influence of the
measurement error and then improve the simulation
accuracy of the stratigraphy. Xiao et al. (71) proposed a
coupled machine learning method to integrate the bore-
hole and CPTU data under a rigorous Bayesian frame-
work and to identify and separate the noisy CPTU data
without subjective judgment, which contributes to more
reliable soil classification and property evaluation.

Wei and Wang (72) developed a novel stratigraphic
uncertainty quantification approach by integrating the
Markov random field theory and the discriminant adap-
tive nearest neighbor—based k-harmonic mean distance
classifier into a Bayesian framework. The inputs of this
approach are the stratigraphies collected at borehole
locations. And the number of the required boreholes
may be dependent on the stratigraphic structure. For
example, more boreholes may be required for the strati-
graphic modeling at the site with the complicated strati-
graphic structure (e.g., the fold stratigraphic structure)
than that with the simple stratigraphic structure (e.g., the
horizontally layered stratigraphic structure). This new
approach has the following advantages: 1) inferring stra-
tigraphic profile and associated uncertainty in an auto-
matic and fully unsupervised manner; 2) reasonable
initial stratigraphic configurations can be sampled and
therefore lower the computational cost; 3) both strati-
graphic uncertainty and model uncertainty are taken into
consideration throughout the inferential process; 4) rely-
ing on no training stratigraphy images. The main proce-
dures of the proposed method may be summarized as
follows (this method has been implemented in Python
3.7.) Interested audiences may contact the corresponding
author of Wei and Wang (72) for the in-house developed
Python package “PyMREF.”

Step I. Collecting Borehole Data and Classifying the
Stratigraphy. The first step is to collect the stratum infor-
mation, which can be revealed through borehole explora-
tion or directly observable from the ground surface,
outcrops, or both. Then, the borehole stratigraphy
should be classified based on the borehole data collected.

Step 2. Sampling an Initial Field Using the DANN-KHMD
Classifier. For generating reasonable initial fields, the dis-
criminant adaptive nearest neighbor—based k-harmonic
mean distance (DANN-KHMD) classifier is developed
to label the unknown (non-borehole) elements using
long-range spatial patterns learned from known (bore-
hole) elements. It is essentially an approach to roughly
“guess” possible labels of the unknown elements given
known elements in a probabilistic manner. Accordingly,

the initial fields can be sampled independently on each
element solely via the DANN-KHMD classifier.

Step 3. Conducting Gibbs Sampling and Updating Model
Parameters. 1) Define a prior distribution of model para-
meters (i.e., the contextual constraint, B) via a multivari-
ate Gaussian distribution with a mean vector and a
diagonal covariate matrix. 2) Provide an initial guess of
model parameters B, and an initial stratigraphic config-
uration. 3) Given the current model parameters $ and
the current stratigraphic configuration, calculate the con-
ditional probability of all unknown elements. 4)
Generate an updated stratigraphic configuration via the
chromatic sampler according to the conditional prob-
ability acquired. 5) Update the model parameters (3 using
prior distribution of B and the likelihood function. 6)
Iterate 3) to 5) until the specific convergence criterion is
met. This is a single simulation of the stratigraphic
configuration.

Step 4. Quantifying Stratigraphic Uncertainty. Generate multi-
ple initial stratigraphic configurations from Step 2 and
execute Step 3. Based on the simulated stratigraphic con-
figurations, the stratigraphic uncertainty can be quanti-
fied using the information entropy.

Characterization of Geomaterials

Many parameters characterizing the properties of geo-
materials, for example, index and strength parameters of
soils, are intercorrelated. Many correlations of geomater-
ials were established in the early decades of soil and rock
mechanics. They had been verified by sufficient research-
ers with wide practical geotechnical and rock engineering
applications. Geomaterials are rarely homogeneous by
nature and may vary spatially because of complex geolo-
gical processes, which motivates geotechnical and rock
engineers to update empirical correlations once more
data are collected. An example is the CPTU correlations
for Norwegian clays established by Karlsrud et al. (73)
which have been updated by Paniagua et al. (74) using
more advanced multiple regression methods based on a
database of 61 block sample data points and CPTU mea-
surements. There is, therefore, always a need for better
understanding of the behavior of soils and rocks to
improve geotechnical design.

Unlike statistical analyses, ML algorithms are able to
learn the association between geotechnical design para-
meters (e.g., undrained shear strength) and index para-
meters without necessarily assuming a structural model
in the data. Given that a large quantity of data has been
collected and stored by the rapid advancement in digital
technology over recent years, ML has been widely used
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Table 2. Case Studies Recently Published by Some of the Most Prolific Authors Adopting ML for Site- or Region-Specific Analyses,

Comparing the Performance of Different ML Algorithms

Study ML algorithms

Predicted parameters Region

Pham et al. (76) PANFIS, GANFIS, SVR, ANN

Nguyen et al. (77) BPNN

Mittal et al. (78) MLR, ANN, SVR, ANFIS

Saedi and Mohammadi (79) ANN

Li et al. (80) RF, ANN

Lin et al. (81) ANN

Liu et al. (28) ANN, RF, SYM
Niyogi et al. (82) SVM, RF, DNN

Undrained shear strength of soft
soils Viet Nam
Friction angle

Coefficient of consolidation
Unconfined Compression

Strength (UCS) and
Stiffness (E)

Nhat Tan and Cua Dai bridges in

Da Nang—Quang Ngai
expressway project, Vietnam

Ha Noi—Hai Phong highway
project, Vietham

Sanandaj-Sirjan, Takab,
Hamedan, Borujerd, and
Neyriz sites in Iran

Permeability, soil-water Singapore
Characteristic Curve (SWCC)
Shear strength and Zhubhai, China

compressibility
Modulus of compression and
coefficient of compressibility
Lateritic soil shear strength

Shen Zhen, China

The Ratnagiri-Sangameshwar
section of National Highway
66 in Maharashtra, India

Note: ML = machine learning; PANFIS = particle swarm optimization—adaptive network based fuzzy inference system; GANFIS = genetic algorithm—
adaptive network based fuzzy inference system; SVR = support vector regression; ANN = artificial neural network; BPNN = backpropagation neural
network; MLR = multiple linear regression; ANFIS = adaptive network based fuzzy inference system; RF = random forest; SVM = support vector machine;

DNN = deep neural network.

to characterize complex behaviors of geomaterials
because of its strong nonlinear fitting capability.

A recent overview of the application of ML algo-
rithms to the prediction of soil properties in the past 10
years was presented by Zhang et al. (75). The implemen-
tation of ML techniques has shown exponential growth
since 2018. Six classical ML algorithms were compared
in their study, namely genetic programming (GP), evo-
loutionary polynomial regression (EPR), support vector
regression (SVR), RF, feed-forward neural network
(FFNN) and Monte Carlo dropout-based artificial
neural network (ANN_MCD). However, important
challenges still remain, such as site uniqueness, sparse
and incomplete site-specific data, lack of a benchmark
data set, and the generalization of ML models.

Site- and Region-Specific Data

A literature review is presented in this section, mainly
discussing the most recent studies, within which a com-
parison among different ML techniques has been per-
formed. Table 2 shows, for each article referenced, the
list of ML algorithms adopted, the predicted parameters,
and the location and area of the case studies. Pham et al.
(76) compared the performance of four machine learning
methods: particle swarm optimization—adaptive net-
work based fuzzy inference system (PANFIS), genetic
algorithm—adaptive network based fuzzy inference sys-
tem (GANFIS), SVR, and artificial neural networks

(ANN) for predicting the undrained shear strength of
soft soils, collected from two bridge projects in Vietnam.
Nguyen et al. (77) developed a backpropagation neural
network (BPNN) machine learning model to predict the
internal friction angle of the soil based on 145 soil sam-
ples collected from Da Nang-Quang Ngai expressway
project in Vietnam. With soil samples from another
region in Vietnam, Mittal et al. (78) developed ML mod-
els, that is, multiple linear regression (MLR), ANN,
SVR, and adaptive network based fuzzy inference system
(ANFIS), to predict the coefficient of consolidation in
the soil. Saedi and Mohammadi (79) investigated the
relation between UCS (Unconfined Compression
Strength) and E (Stiffness) of migmatites and microstruc-
tural characteristics using image processing and ANN
techniques. Li et al. (80) developed a database containing
both saturated and unsaturated hydraulic and mechani-
cal soil properties in Singapore to predict unknown para-
meters, for example, permeability and soil-water
characteristic curve (SWCC), using RF and ANN. Lin
et al. (81) developed an ANN model to map the shear
strength and compressibility of soft soils based on a
database consisting of over 2,000 sets of physical and
mechanical properties for soft soils in Zhuhai city,
China. Liu et al. (28) developed three ML models—
ANN, RF, and SVM—to map the two compressibility
indices based on a database consisting of 743 sets of
physical properties and corresponding compression
indices for soft soils in Shenzhen, China. Niyogi et al.
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(82) assessed three machine learning—based approaches,
namely SVM, RF, and deep neural network (DNN), for
predicting the performance of lateritic soil shear strength
based on soil samples collected along the Ratnagiri—
Sangameshwar section of National Highway 66 in
Maharashtra, India. They concluded that the DNN
model has the highest prediction accuracy for the resi-
dual soil shear strength among the three distinct pro-
posed ML models.

Different authors have employed different operational
procedures to move from the construction of the data-
base needed to feed the ML algorithms, to the prediction
of the properties of geomaterials, and to the performance
evaluation of the computational model. Three main
common phases of analysis may be recognized in each
procedure: 1) data preprocessing; 2) model building and
validation; and 3) testing.

Step I. Data Preprocessing. Data preprocessing facilitates
the training process by appropriately transforming the
entire training data set to remove outliers, produce the
optimal set of input variables (features), and normalize
different features to an equivalent range, which can be
used to build an ML model. It is not surprising that out-
lier detection is not very often carried out as only a lim-
ited number of data points are available in most of the
studies. Moreover, outliers can be hard to define for geo-
properties. Among the few studies, Li and Misra (83)
used isolation forest to remove outliers of compressional
and shear travel time logs (DTC and DTS) acquired
using sonic logging tools. Correlation analysis and fea-
ture selection is another important step in data prepro-
cessing. It is vital to remove highly correlated input
features and irrelevant features for the prediction of
physical and mechanical properties. Correlation coeffi-
cients are widely used to measure the correlation between
features, for example, the Pearson correlation coefficient
and Spearman correlation coefficient. Various feature
selection techniques can be used for removing irrelevant
features, such as least absolute shrinkage and selection
operator algorithm (LASSO), random forests—recursive
feature elimination (RF-RFE), and mutual information
have been applied by Mittal et al. (78). SHapley Additive
exPlanations (SHAP) (84) was used by Li et al. (80) to
investigate the impact of each input variable on different
output soil properties. These indices could be used to
validate the results, enabling researchers to explore the
algorithm’s logic and verify its reliability.

Step 2. Model Building and Validation. As indicated in Table
2, most studies used conventional ML techniques, for
example, ANN, SVM and tree-based methods. There is
no consensus on a specific “optimal” ML algorithm for
predicting physical properties of geomaterials. Pham

et al. (76) concluded that out of four models the PANFIS
emerges as a promising technique for prediction of the
strength of soft soils. The ANN was the best model in
Liu et al. (28), as it provided a simple analytical form
with no hidden dependency between the bias and pre-
dicted indices. While building and testing the ML mod-
els, the entire data set is usually split into training and
testing data sets. The training data set could be divided
further into training and validating data sets, or the
cross-validation techniques could be applied to a limited
data sample, without further splitting of the training data
set.

Step 3. Testing. The ML models established in Step 2 need
further evaluation of their performance against unseen
data sets. The common performance metrics that are
typically adopted in the literature include:

e cxpressions quantifying the error of the analysis
by means of an objective function (OF), the coeffi-
cient of determination (R?), the mean absolute
error (MAE), and the root mean square error
(RMSE);

e the model bias method using bias mean, bias coef-
ficient of variation (COV), and bias probability
distribution (87).

Generic and Benchmark Data Sets

Site-specific data in geotechnical engineering are gener-
ally limited (from several hundred to a thousand at
most). Therefore, data samples collected from various
sources or places were used to develop ML models. It is
worth mentioning that the database compilation by
ISSMGE TC304 (304 dB) (http://140.112.12.21/issmge/
tc304.htm) could be a suitable platform for using open
data sets. Asghari et al. (85) and Zhang et al. (6) used the
304 dB to investigate the application of ML methods for
the prediction of the undrained shear strength of soft
soils and other complex correlations in engineering
metrics. Ma et al. (86) developed hybrid GA-SVM and
PSO-SVM models for the prediction of permeability of
cracked rock based on a database developed from exist-
ing literature. Zhang et al. (87) investigated the perfor-
mance of five commonly used ML algorithms, that is,
backpropagation neural network (BPNN), extreme
learning machine (ELM), SVM, RF, and evolutionary
polynomial regression (EPR) in predicting compression
index Cc based on a global database consisting of 311
data points of initial void ratio ey, liquid limit water con-
tent wr, and plasticity index I,. Chen and Xue (88) col-
lected a total of 151 data sets from the literature that
were used to construct the ML models.
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Figure 2. Predicted versus measured cone penetration test
(CPT) undrained shear strength (in kPa) over the test data set.
The vertical line shows the estimated standard deviation. The
black dashed line is the I:I line.

Uncertainty Quantification

Uncertainties associated with geomaterials (soils, rocks),
geologic processes, and possible subsequent treatments
are usually large and complex. Current ML modeling is
always deterministic. As such, only high-quality data can
be used because there is no capacity to address uncertain-
ties. Zhang et al. (89) pointed out that applying the pre-
dicted result without any reliability evaluation using ML-
based models may induce high risk. A Bayesian neural
network (BNN) integrated with variational inference (VI)
and Monte Carlo dropout (MCD) was used in their study
to predict the compression index Cc and undrained shear
strength s, of clays and to evaluate the reliability of the
ML model. An ANN-based model that takes into account
uncertainty estimates was developed in (90). The database
of CPTU and triaxial tests used contained 241 laboratory
triaxial tests. All test specimens were of high quality,
including 180 undisturbed specimens taken with a 72-mm
diameter fixed piston sampler and 61 undisturbed speci-
mens taken with 40-cm diameter block samples. The
ANN model requires the water pressure and effective
stresses in addition to the CPTU data. The standard
deviation estimate was performed based on the “dropout
method” described in Gal (97). The predicted and mea-
sured undrained shear strength in triaxial compression are
compared in Figure 2. An estimated standard deviation of
the predicted undrained shear strength is also shown.

3-D Integrated Ground Model

For large geotechnical projects on land and offshore
developments, it is current practice to conduct both geo-
physical and geotechnical investigations. Ground models

integrate the geotechnical and geophysical data collected
from a site and provide a three-dimensional map of the
stratigraphy and the geo-properties.

In geotechnical projects, the quantitative integrated
ground model is a requirement for cost-optimal site char-
acterization. The ground model refers mainly to the strati-
graphic configuration and the associated geotechnical
properties in this study. Extensive studies focusing on the
stratigraphy classification or the geomechanical characteri-
zation have been reported in the geotechnical literature
(e.g., Mariethoz and Caers [34], Shi and Wang [47], and
Wei and Wang [72]). However, relatively limited studies
dealt with both the stratigraphic configuration and the
geomechanical parameters in a specific model (92). Note
that both the strata and the geo-properties at a site are a
product of the same deposit histories, tectonic, and human
activities; their spatial distributions are expected to share
similar features. Thus, the study on the site characteriza-
tion that considers both the stratigraphy classification and
the geomechanical characterization, especially the spatial
variabilities of the stratigraphic configuration and the
associated geotechnical properties, is warranted.

In the conventional engineering approach, the sub-
surface stratigraphic configuration at a site is usually
constructed through spatial interpolation of the strati-
graphy collected at borehole locations, coupled with
local experience (57). The geo-properties of each stra-
tum are taken as fixed values (e.g., the mean of the
geo-properties derived at borehole locations) (93). The
ground model constructed with the conventional
approach simplifies the actual geological body.
Although this conventional approach has been widely
adopted in practice, no scientific rationale is available
to support this simplification (92).

Geotechnical analyses and interpretations often rely
on isolated 1-D boreholes. On the other hand, geophysi-
cal data are collected in 2-D lines and 3-D volumes.
Geophysical data therefore provide the natural link to
repopulate geotechnical properties found in the 1-D
boreholes onto a larger area and thereby build a consis-
tent and robust ground model (94). Thus, it is current
practice to conduct both geophysical and geotechnical
investigations for large geotechnical projects on land and
offshore developments. Ground models integrate the
geotechnical and geophysical data collected from a site
and provide a 3-D map of the stratigraphy and the geo-
properties. Many approaches, such as the geometrical
approach (94), the geostatistical approach (95), and the
ANN:S (96) have been reported to map the dynamic prop-
erties from the seismic data (stratigraphic information, P-
wave velocities, amplitudes, and their attributes) into the
geotechnical or geomechanical properties. Sauvin et al.
(94) showed that the machine learning approach provides
the most accurate prediction of the ground model from
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the geophysical data, over the geometrical geostatistical
approach and the geostatistical approach.

The implementation procedures of the machine learn-
ing approach presented in Mittal et al. (78) can be sum-
marized as follows.

Step 1. Derive a range of quantitative attributes from
the seismic reflection data, particularly acoustic impe-
dance using a genetic algorithm for optimization.

Step 2. Convert the seismic attributes from the time
domain into the depth domain.

Step 3. Down-sample the piezocone penetration test
(CPTU) tip resistance (g.) to a sample interval match-
ing that of the depth-converted seismic attributes.
Step 4. Use an ANN to perform multi-attribute regres-
sion between the range of quantitative seismic attri-
butes and CPTU ¢, by training at several calibration
sites.

It is worth noting that above approaches focused on
deriving the most-probable ground model; however, the
spatial variabilities of the stratigraphic configuration and
the associated geotechnical properties were generally
ignored. To overcome this obstacle, Shi and Wang (97)
proposed a stochastic framework for modeling the strati-
graphic uncertainty and spatial variability of soil proper-
ties by machine learning and random field simulation
from limited site investigation data. This framework
could effectively generate multiple realizations of geolo-
gical cross-section and random field samples of geotech-
nical properties from limited measurements (obtained
from the CPT), through which the uncertainties associ-
ated with the ground model can be characterized. We
recommend the proposed framework for characterizing
the ground model and associated uncertainties.

Step |. CPT-Based Soil Classification and Interpretation
of Consolidation Parameters

The cone penetration test (CPT) is a commonly used in
situ testing method for soil classification and characteri-
zation of subsurface geotechnical property profiles. CPT
provides direct continuous vertical line measurements of
cone pressure, sleeve friction, and pore pressure. Apart
from soil classification, CPT data can also be used to
estimate the soil properties of fine-grained materials via
empirical correlations established in the literature (e.g.,
Robertson and Cabal [98]).

Step 2. Stratigraphic Uncertainty Modeling by IC-
XGBoost2D

The iterative convolution extreme gradient boosting (IC-
XGBoost2D) is a stochastic simulation algorithm for

developing 2-D subsurface geological cross sections from
training images and limited site-specific measurements.
A training image reflects prior geological knowledge at
the area of interest and serves as an effective supplement
to limited site-specific data (99).

Step 3. Modeling Soil Property Spatial Variability from
Limited Measurements

Bayesian compressive sampling (BCS) is a non-
parametric machine learning method developed for inter-
polating spatially varying geo-properties (e.g., cone pres-
sure) from sparse measurements. Under compressive
sensing/sampling, a complete signal (e.g., 2-D spatially
varying soil property profiles) can be approximated as a
weighted summation of a limited number of pre-specified
basis functions (e.g., discrete cosine basis functions).

Step 4. Sequential Modeling of Soil Property Spatial
Variability for Each Soil Type

Once subsurface geological cross sections or realizations
are developed using IC-XGBoost2D, the best estimate of
cone pressure, sleeve friction, and pore pressure within
the 2-D cross section with high spatial resolution can be
obtained using BCS and CPT measurements.

Scour Assessment Using ML

Various recent studies have looked into applications of
AI-ML in geohazard assessment and management for
geotechnical systems (/00, 101). In this paper, we focus
on scour as one of the most critical mechanisms affecting
bridge foundations and how ML techniques can be
implemented step by step to provide more reliable bridge
scour estimation and real-time risk assessment for design
and maintenance purposes, respectively.

In the past two decades, numerous studies have
explored local scour prediction around bridge piers
using ML. SVM, genetic algorithms (102, 103), and
artificial neural networks (ANNSs), particularly FFNN
or multilayer perceptrons (MLP) (/04—107) are among
the most commonly used techniques. These ML meth-
ods have shown superior performance over traditional
empirical equations in the accuracy of maximum scour
depth predictions for a given training data set; however,
the generalization ability of these types of predictive
models decays significantly outside the convex hull of
the training data set, which can lead to poor generaliza-
tion to unseen data (/08). Therefore, to use these mod-
els for maximum scour depth prediction, the bridge
characteristics must be within the training database
range. A good review of the literature can be found in
Sharafati et al. (109).
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Given the limitations of the current scour prediction
models, the complexity of scour phenomenon, uncer-
tainty in flow (flood levels), riverbed and geomorpholo-
gical conditions, real-time monitoring, and forecast to
manage the scour risk is evolving as a promising tool.
Yousefpour et al. (107, 108) have pioneered this
approach by using historical monitoring data from
bridge piers, including timeseries of scour depth and river
flow depth variation. In their approach, they have used
both DL and Bayesian inference methods that have
shown reasonable accuracy in providing real-time assess-
ment of scour depth. In their most recent study, they
have developed long short-term memory (LSTM) models
that can provide estimates of scour depth a week in
advance for case study bridges in Alaska (/08).

Based on a critical review of the existing methods,
the following techniques are recommended for maxi-
mum (design) and real-time scour depth prediction
(maintenance).

Maximum Scour Depth Prediction Using Feed-Forward
Neural Networks

Fully connected FFNNs or MLPs are powerful in repre-
senting nonlinear high dimensional processes influenced
by multiple physical factors. MLPs are universal approx-
imators theoretically capable of approximating any func-
tion, even with only one hidden layer with enough
nonlinear computational units (neurons) (110, 111).

The application of FFNNs in developing scour pre-
diction models has been explored by numerous studies,
as referenced in the previous section. Many used the US
National Scour Study database developed by the US
Geological Survey (USGS) in collaboration with the
Federal Highway Administration (FHWA) (/, 2).
However, these models can hardly be used in mainstream
scour design. The major obstacles in upscaling such ML
models to practice are:

1) Poor generalization/extrapolation capacity: This
is a result of the dependency of ML models on the
range of training data, meaning ML models need
to be trained with a database that is statistically
representative of a particular bridge.

2) Database deficiencies and poor statistical design:
Databases are built with stitching scattered data
sets without much statistical design, involving
many variables that show sparse range across the
various data sets.

3) Errors and subjectivity in measurements: This
issue with scour depth measurement requires a
judgment on the reference surface. Different judg-
ments/assumptions on reference levels such as
ambient bathymetric, as-built, or maximum bed

levels can result in different reported scour depth
in field measurement data. For more information,
refer to Landers and Mueller (/).

4) ML knowledge and implementation complexities:
Lack of ML (and coding) knowledge and experi-
ence in practice engineers, along with a lack of
guidelines, hinder AI-ML application for bridge
scour design.

The following methodology is proposed to develop a
simple ML model to estimate the maximum scour depth
with a confidence bound for a new bridge. For more
details on the approach, readers are referred to
Yousefpour et al. (/07). Engineering due diligence and
quality control checks must be taken when applying this
method for design:

Step I|. Database Compilation. Using the USGS National
Bridge Scour Database, a “global” ML model can be
trained first. This model needs to be later retrained
(transfer learning as explained in step 2) using a “local”
or site-specific database with a well-designed statistical
distribution. The local database should include data
from several bridges with relatively similar riverbeds,
flow, and structural characteristics. The key input/target
parameters for the scour ML model are listed below, as
identified in many earlier studies. These parameters for
the new bridge should lie in the convex hull of the local
database for a reliable scour prediction:
Input parameters (features)

e Sediment transport (scour type): This can be
divided into live-bed or clear-bed. In clear-water
conditions, there is limited transport of bed mate-
rial into the channel from upstream, whereas, in
live-bed conditions, materials are transported
through upstream flow and deposited downstream
(filling after scour). For more details on the defini-
tion, refer to Landers and Mueller (/) and Mueller
and Wagner (2).

e Flow depth: This should be measured using
gauges, stage sensors, or other techniques. For
best practice in the measurement of such para-
meters, readers are referred to Mueller and
Wagner (2).

e Flow velocity: Acoustic doppler velocimeters
(ADV) can measure average velocity around piers.
For best practice in velocity measurements, read-
ers are referred to Landers and Mueller (/).

® Pier/pile geometry (shape, skew, width, and
length): This is available in national databases
(US National Bridge Inventory [NBI]) and can be
measured on site or extracted from bridge plans/
drawings.
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e Bed condition: This determines the cohesive or
non-cohesive nature of sediments around the
bridge.

e Sediment size: Median grain size (Dso) can be mea-
sured from sampling at the site or from bridge
design site investigation reports. The common
sampling methods are explained in Landers and
Mueller (7).

Target parameter (output)

e Scour depth: This should be measured after a
flood event—within 24 to 48 h in a live-bed scour
situation (mostly observed in non-cohesive river
beds); this allows reaching to equilibrium scour
depth. For clear-bed scour the time-dependency
of scour needs to be established to determine the
suitable time of scour depth measurements.

The key point in this step is to develop a statistically
well-designed database that can be representative of the
population of bridges in a region of interest. The impor-
tance of the statistical design of databases is seemingly
overlooked in the current literature, especially given the
surge of featureless DL approaches. By referring to core
statistical knowledge, we know that the skewness of a
database (especially for smaller data sets) can lead to the
model favoring specific parameters and trends in the
data (bias), which results in unreliable predictions. To
have a well-designed database, the statistical distribution
of all parameters in the database should be analyzed to
ensure that there is a relatively uniform distribution
across the range of variability. The data should be nor-
malized before training the ML model.

Step 2. Developing a “Simple Enough” ML Model. A simple
MLP (FFNN) network is shown in Figure 3. A three-
layer architecture, with one hidden layer applying a sig-
moid activation function such as the ones explained in
Yousefpour et al. (/12) can be followed. For regression
problems, using more than one layer and too many units
often does not lead to more accurate predictions. For
theoretical details of MLP algorithms, readers are
encouraged to refer to Hornik (//0). Training in MLPs
means adjusting the weights and biases to reach the uni-
versal minimum of a loss function, which is usually
defined as the mean of squared prediction errors (MSE)
across the training database. However, more often than
not, optimization techniques find a local minimum
instead of the global minimum. Several techniques can
be implemented to avoid being trapped in a local mini-
mum, such as regularization, cross-validation, and early
stopping, among others. A practical method is early
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Figure 3. Simple architecture for MLP/FNN (3).

Note: MLP = multilayer perceptron; FNN = feed-forward neural network.

stopping based on a “patience number,” which is the
maximum consecutive number of times to allow the error
to increase over a validation data set during training
(113, 114).

The generalization of ML models is assessed based on
a test data set, which represents the model performance
on unseen data. Several metrics can be used for this pur-
pose, including RMSE, coefficient of determination (R?),
MSE, and MAE. MAE and RMSE allow error measure-
ment in the same unit as the target parameter.

Transfer learning has been proven to improve the per-
formance of ML models significantly (//5). In this
method, instead of training an ML model from scratch,
that is, starting from a random point in the space of
weights and biases, the model is initialized using a set of
parameters from a previously trained model. In the con-
text of image data and pattern recognition, this can have
a tremendous effect; therefore, using pre-trained models
is a must. In the context of scour prediction, this can
mean “transferring the learning” from a model trained
using a global database of scour to a site-specific ML
model that needs to be trained with a local database.

For this purpose, first a “global ML” model can be
trained according to the recommendations in step 1, then
a “local ML” can be trained, initializing from the set of
weights and biases of the trained global model.

Step 3. Validation and Fine-Tuning. Using an ensemble of
models provides more accuracy in predictions and
enables uncertainty assessment. An ensemble of FFNN
can be generated by repeating (random initiation of net-
work weights and biases) the training over many times
(+ 50) to find a group (ensemble) of best models. The
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Figure 4. Cross-validation methods: (a) K-Fold; and (b) Monte Carlo.

ensemble’s performance can be reported by using first-
order statistics of the resulting distributions. Readers are
referred to Yousefpour (3), Bateni et al. (/04), and Sagi
and Rokach (/16) for more details on ensemble methods.

One of the most effective cross-validation techniques
that also can be integrated with the ensemble method, is
to use K-fold or Monte Carlo cross-validation (//7) (as
opposed to the hold-out method) to enable making the
most out of a small database. In this technique, the net-
works in the ensemble use various parts of the data for
training, validation, and testing, as shown in Figure 4.

Fine-tuning and hyperparameter optimization can
lead to superior network configurations. The main hyper-
parameters for an FFNN model include the number of
hidden layers, the number of units in each hidden layer,
the type of activation function in units, input feature
selection/combination, optimization, and training para-
meters such as learning rate, maximum number of
epochs, and early stopping criteria (patience number,
minimum error, etc.). The most commonly used hyper-
parameter search techniques are grid-search and random
search, which can be applied to speed up the optimization
process (108, 118). Several available codes and libraries
in Python can be readily applied, such as Optuna and
Talos (119).

Step 4. Assessment of ML Predictions. The ensemble of the
best FFNNs generates a distribution of predictions on
scour depth for a given bridge. Having a larger ensemble
ensures the uncertainty is better captured. Mean, stan-
dard deviation, and 95% confidence bound can be
reported from the generated distribution. We recom-
mend scatter-plotting the scour depth versus velocity and
flow depth for all the records in the local database and
locating where the ML prediction lies within the local
and global database. The ultimate judgment on the scour
depth estimates for a given bridge at a target flood level
(e.g., 200-year return period), needs to be based on both
the ML prediction and the historic local trends observed
from past flood events.

Real-Time Scour Assessment Using Deep Learning

Regular inspection and monitoring of the scour in exist-
ing bridges has been mandatory in the United States and
some other countries because of frequent catastrophic
events in the past few decades caused by scour failure of
bridges. Scour is the most common cause of failure for
bridges, with approximately 260,000 scour critical bridges
across the country (/20).
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Figure 5. Sensors mounted on bridge piers in California and Alaska for continuous measurement of river water and bed elevation: (a)

solar-powered stage; and (b) sonar.
Source: Photo courtesy of Alaska USGS and Renesys.

Given the shortcomings in scour depth estimation with
existing methods, many bridges are highly vulnerable to
scour. The US NBI has identified the scour risk of all
bridges in the United States with a “scour-vulnerability”
index (/21). This index is assessed based on regular scour
inspection and monitoring mandated by FHWA.

Real-time monitoring for bridges exposed to a higher
risk of scour can enable reliable risk management and a
data-driven understanding of scour process. Several US
Departments of Transportation (DOT) in partnership
with USGS have started rigorous scour monitoring pro-
grams for their most vulnerable bridges. States such as
Alaska, with most bridges exposed to seasonal flooding,
started this program in the early 2000s (available at
Alaska Science Center). Other states such as Idaho,
Colorado, and Oregon, have followed similar approaches.
This monitoring program allows for real-time measure-
ment of bed elevation and flow level at a bridge pier using
sonic/echosounder devices (see Figure 5) that measure the
distance based on the sonic wave travel time within a spe-
cific material (water or air). For more details, readers are
referred to USGS published reports for each state (122).

Yousefpour et al. (107, 108) studied the historic Alaska
monitoring data in their recent research to develop scour
forecast and early warning models using DL methods.
They have proposed an Al-based methodology for real-
time scour assessment to enable more reliable risk assess-
ment for critical bridges. The DL models can also provide
insights into estimating the maximum scour depth for
new bridges within the same region with similar flow,
structure, and characteristics. The proposed methodology
can be implemented for the assessment of scour in existing
bridges as per the following steps:

Step 1. Collecting Site-Specific Historic Scour Data: Continuous
Measurement of Bed and Flow Level (and Velocity) Variation.. A
review of existing scour field monitoring data can be
found in Hunt (/23). Despite the challenges of sensor
readings, which may result in missing data across a year,
such as sensor damage resulting from flooding, accumu-
lation of trash and debris, and vandalism, they can pro-
vide valuable information about the scour process for a
particular bridge. The generated timeseries data of flow
depth and scour depth enable site-specific scour assess-
ment, which can be powerful in addressing the “extrapo-
lation” problem of ML models discussed in the previous
section.

Any type of sensor that can continuously measure
flow and bed levels can be instrumental. The measure-
ment of bed elevation measurement using sonar sensors
is well explained in Henneberg (/24). Current methods
for measurement of flow level or stage are explained in
Sauer and Turnipseed (125). Flow velocity measurements
are also recommended, which can be measured by acous-
tic doppler and velocimeters as described in Sauer and
Turnipseed (126).

Step 2. Data Processing. Data processing is a vital step
before ML development. Although DL models have
been proven to be powerful in addressing noise and out-
liers in training data (108, 118, 127), performing the fol-
lowing processing can enable faster learning and more
reliable performance:

1) Basic cleaning and synchronization of timeseries:
For scour sensor data, that could mean ensuring
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Figure 6. Outlier detection in sonar (scour) data, comparing
various denoising and filtering techniques.

2)

3)

random errors in data are removed and ensuring
a reasonable resolution (reading intervals) for all
timeseries data and synchronizing the readings
among various sensors, such as bed elevation,
flow elevation, and velocity. Down-sampling and
up-sampling can be performed to ensure the data
are captured with reliable resolution. For scour,
half-hourly or hourly readings are recommended
as scour and flooding can develop within a few
hours.

Outlier detection: Detecting outliers is essential as
it can mislead the model with seemingly correct
but erroneous readings. Figure 6 shows an exam-
ple of how accurate outlier detection can affect
identifying the true trend of the scour data. One
of the common methods for outlier rejection is
the median absolute deviation (MAD) method.
Data is first normalized (standard normal) and
points with absolute values greater than 3.5 are
defined as outliers within a selected time window.
The length of this window is critical and needs to
be adjusted depending on reading intervals and
expected time variations in the data. For instance,
variation in scour depth (in case of live-bed scour)
can happen within a few hours to a few days.
MAD is more robust than traditional standard
deviation methods and less sensitive to outliers
and extremes.

Missing data imputation: This is very common
for scour data resulting from blockage of sensors
by debris accumulation or flood-related distur-
bance, among other reasons. Therefore, applying
emerging imputation techniques in cases where
the available data is sparse but nevertheless valu-
able in understanding the scour trend is essential.
Moritz and Bartz-Beyerstein (/28) provide an
overview of univariate timeseries imputation tech-
niques. One of the simplest methods is linear
interpolation and more advanced methods, such
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Figure 7. Comparing various filtering/smoothing methods for
sonar timeseries data.

as the Gaussian process can enable more realistic
data representations (/29).

4) Smoothing and filtering: Moving average and
other auto-regressive methods can be quite pow-
erful for timeseries smoothing and denoising (730,
131). They have specifically been found useful for
sonar and stage sensor data (/71). Signal process-
ing methods such as the low-pass filtering tech-
nique can enable removing extreme frequency
ranges from the data. Figure 7 shows how these
different methods compare for sonar data from a
bridge in Alaska.

Step 3. Developing DL Models: LSTMs and CNNs. In RNNSs,
the output of each neuron goes back to itself, and the
units in the subsequent layer at each time step. This
enables these algorithms to keep a “memory” of past
“activations.” LSTM networks are particular types of
RNN that use special “gates”—input, forget, and output
gates—to update the memory state at each step, as shown
in Figure 8 (/32). This enables LSTMs to maintain a
short and long-term memory of temporal patterns within
timeseries data and incorporate them into future predic-
tions. LSTMs have shown superiority compared with
other RNNs for timeseries forecasting in various fields,
owing this success to their ability to overcome the prob-
lem of vanishing gradients (/33).

For scour forecasting, Yousefpour and Correa (108)
showed that LSTM can provide far more accurate pre-
dictions of scour compared with empirical equations. In
their case studies on Alaskan bridges, they developed
three variants of LSTM algorithms that can provide
scour prediction seven days in advance with an average
error of 0.2 to 0.35m. In a more recent study, they
explored applying CNNs as a more computationally effi-
cient DL algorithm for real-time forecast of scour, and
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slice (118).

Note: LSTM = long short-term memory; CNN = convolutional neural network.

compared CNN and LSTM performance on data from CNN architectures used in these studies for sonar time-
Alaskan bridges (/78). Results showed competitive per- series prediction.

formance by temporal CNNs with significantly lower The training of DL models is done by timeseries
computational cost. Figure 9 shows the LSTM and sequences generated by slicing the whole timeseries data
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into a DL model; and (b) slicing the timeseries data using a sliding window, including input plus label sequence.

into smaller sequences (data slices) using a sliding win-
dow. This process is explained in detail in Yousefpour
and Correa (/08). The sliding window moves over the
database one timestep at a time. Each sequence (data
slice) has an “input” and a “target” or “label” segment,
as shown in Figure 10. The training is done in batches
containing several data slices. The network’s weights and
biases are adjusted like MLPs by minimizing the error of
prediction over the label length of data slices.

Step 4. Fine-Tuning and Validation of DL. To obtain the opti-
mal configuration of these DL algorithms, hyperpara-
meter tuning must be performed, similar to what was
recommended for FFNNs in the previous sections. One
important hyperparameter in timeseries forecasting is the
input and label width and their ratio. The impact of
selecting the most optimal sequence length to ensure the
temporal variations in the data are well explained in
Yousefpour and Correa (/08) and Yousefpour and
Pouragha (/34). The label width is the length of forecast
window and should be selected to provide enough time
for implementing proper risk countermeasures. In case
of bridge scour, a minimum of seven days was deemed
necessary.

Cross-validation methods similar to FFNNs can be
implemented to improve the performance of the DL
models and reduce the chances of overfitting. One crucial
difference is the temporal dependencies in timeseries
data, which can make data division for training a bit
absurd. We recommend ensuring that training, valida-
tion, and testing are consecutive unless time is intro-
duced as an additional feature to the models. Methods
such as K-fold cross-validation can be implemented
sequentially, as shown in Figure 11. In this method, the
model is retrained at each step using transfer learning;
the test data set in each step needs to be free of overlaps
with the previous step data to avoid evaluating the model
over “seen” data. A hold-out test data set can be kept
aside to evaluate the final model at the end of sequential
training. This metric can be compared and reported with
the average performance of models over test data sets
across the sequential training steps.

The prediction of the DL model over data slices that
have continuous overlaps results in overlap in predic-
tions which will provide an uncertainty assessment
opportunity. In addition, repeating the training several
times provides a range of predictions that can be
included in the set of predictions. Based on that, confi-
dence intervals and the meaning of predictions can be



Transportation Research Record 00(0)

Hold-out test

Data

Step 1 Train | Val ‘ Test |

Step 2 Train | Val ‘ Test

Step 3 Train | Val

| |

Step 4 Train

Val ‘ Test ‘ ’ ‘

Figure 1 1. Sequential K-fold cross-validation with transfer learning: the arrow shows transfer learning between training steps.

9.14

8.53

7.93

7.31
6.70

Elevation (m)

6.10

5.80

—— sonar

- = mean pred:Model-1

= mean pred:Model-2

== mean pred:Model-3

- = mean pred:Model-4

== mean pred:Model-5
95% Cl sonar pred:Model-1
95% Cl sonar pred:Model-2
95% Cl sonar pred:Model-3
95% Cl sonar pred:Model-4
95% ClI sonar pred:Model-5

Elevation (m)

sonar
mean pred:Model-1
mean pred:Model-2
mean pred:Model-3
mean pred:Model-4
mean pred:Model-5
95% CI sonar pred:Model-1
95% Cl sonar pred:Model-2
95% Cl sonar pred:Model-3
95% ClI sonar pred:Model-4
95% ClI sonar pred:Model-5
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models (/18).

Note: LSTM = long short-term memory; CNN = convolutional neural network.

established. Figure 12 shows an example of an LSTM
and CNN model prediction over a test subset for an
Alaskan bridge (118).

In addition to metrics of average error (MSE, MAE,
or RMSE), the DL model predictions should be evalu-
ated for trend detection, that is, peaks and troughs
through fill and scour episodes. The error in prediction
of peaks and troughs can provide another performance

metric for the scour forecast model performance (read
more in Yousefpour and Correa [108]).

Step5. Assessment of Upcoming Scour. The proposed real-
time DL forecast models can provide a tool for risk
assessments of an upcoming scour event. The uncertainty
and reliability of the forecast must be assessed using
engineering judgment by also evaluating meteorological
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and flood forecasts and the available historical trends for
a particular bridge and/or similar bridges in a region.
Lower bounds of scour depth predictions are recom-
mended to minimize risk in detected major scours. Using
real-time cameras or aerial photography (e.g., drones)
can provide further inputs for more reliable decision
making and taking the most appropriate plans of action
to manage scour failure risks.

Conclusions

This paper discussed emerging AI-ML techniques for
subsurface site characterization and geohazard assess-
ments. Our review revealed that ML can be a promising
solution for characterizing subsurface conditions and
geomaterials. ML algorithms make more accurate pre-
dictions than traditional empirical correlations, while the
interpretation and explanation of ML models need to be
regarded as a secondary objective. There is no consensus
on an “optimal” ML/DL algorithm for subsurface site
characterization, even when looking at the results of the
most recent comparative studies in the prediction of
physical and mechanical properties of geomaterials. The
choice between adopting conventional ML (ANN, RF,
SVM, etc.) or DL algorithms primarily depends on the
type and quantity of available data and if explicit expres-
sions are preferred. The uncertainty associated with sub-
surface features (layer boundaries, discontinuities, voids,
anomalies, etc.), spatial variability of geo-properties and
ML modeling is another issue that needs further explora-
tion. In the assessment of geohazards, bridge scour was
the focus of this paper; nevertheless, the reviewed and
recommended techniques can be applied to other types
of geohazards. A step-by-step methodology for imple-
menting both traditional ML and emerging DL methods
was discussed in application to prediction and real-time
forecasting of scour for bridge foundations. The guide-
lines and provided references can pave the way for imple-
menting similar ML methods in practice. Some of the
obstacles and challenges of applying these methods were
also highlighted.
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