• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges Geotekniske Institutt
  • NGI articles
  • View Item
  •   Home
  • Norges Geotekniske Institutt
  • NGI articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Framework for Versatile Shape of Yield Surfaces for Structured Aniso-tropic Soft Soils

Sivasithamparam, Nallathamby; Castro, Jorge
Chapter
Thumbnail
View/Open
Sivasithamparam_Castro%282016%29.pdf (1.492Mb)
URI
http://hdl.handle.net/11250/2411698
Date
2016
Metadata
Show full item record
Collections
  • NGI articles [1175]
Original version
Medzvieckas, J. [Eds.] The 13th Baltic Sea Region Geotechnical Conference Historical Experience and Challenges of Geotechnical Problems in Baltic Sea Region , Vilnius Gediminas Technical University Press, 2016  
Abstract
A framework based on logarithmic contractancy is proposed to produce versatile shapes of yield surfaces for structured anisotropic clays. The recently proposed constitutive model (E-SCLAY1S) is an extension of existing model called S-CLAY1S, which is a Cam Clay type model that accounts for anisotropy and structure. A new parameter called contractancy parameter is introduced to control the shape of the yield surface as well as the plastic potential (as an associated flow rule is applied). This new parameter can be used to fit the coefficient of earth pressure at rest, the undrained shear strength or the stiffness under shearing stress paths predicted by the model. The model predicts the uniqueness of the critical state line and its slope is independent of the contractancy parameter. The effect of the shape of the yield surface was investigated on computed results of a benchmark embankment constructed on Bothkennar (Scotland) clay by employing the E-SCLAY1S model as a user-defined soil model into the PLAXIS finite element code. The results demonstrate that the contribution of the shape of yield surface (logarithmic contractancy parameter) have a relatively large effect on lateral movement of subsoil beneath the toe of the embankment compared to the settlement of subsoil at the centre of the embankment.
Description
-

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit