Show simple item record

dc.contributor.authorPark, Joonsang
dc.contributor.authorKaynia, Amir M.
dc.date.accessioned2017-09-25T12:17:54Z
dc.date.available2017-09-25T12:17:54Z
dc.date.created2017-09-13T08:33:45Z
dc.date.issued2017
dc.identifier.citationProcedia Engineering. 2017, 199 1556-1561.
dc.identifier.issn1877-7058
dc.identifier.urihttp://hdl.handle.net/11250/2456542
dc.description.abstractThis study presents a finite element (FE) framework for simulation of steady state wave motion, combined with a so-called PML approach. The steady state wave motion of current interest are not only time-harmonic load but can also be constant-speed moving load. We adopt an existing PML approach (from low-frequency electromagnetic wave) to apply to the steady state FE simulation of constant-speed moving load vibration as well as temporal harmonic load vibration. In the paper, we will present the PML formulation in both the frequency and steady-state time domains. To validate the approach, then we compare the simulation results with available analytical reference solutions, and with a set of real measured field data (high-speed train data). In addition, we solve more example of steady state vibrations resulting from different train speed (e.g. subcritical, critical and supercritical).
dc.language.isoeng
dc.titleFE simulation of steady state wave motion in solids combined with a PML approach
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
dc.source.pagenumber1556-1561
dc.source.volume199
dc.source.journalProcedia Engineering
dc.identifier.doi10.1016/j.proeng.2017.09.054
dc.identifier.cristin1493180
cristin.unitcode7452,4,5,0
cristin.unitcode7452,4,2,0
cristin.unitnamePetroleumsgeomekanikk og geofysikk (PGG)
cristin.unitnameComputational Geomechanics (CGM)
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record