Vis enkel innførsel

dc.contributor.authorLenart, Stanislav
dc.contributor.authorKaynia, Amir M.
dc.date.accessioned2019-11-15T09:35:06Z
dc.date.available2019-11-15T09:35:06Z
dc.date.created2019-09-05T15:29:10Z
dc.date.issued2019
dc.identifier.citationTransportation Geotechnics, 21(2019)#100276. doi:
dc.identifier.issn2214-3912
dc.identifier.urihttp://hdl.handle.net/11250/2628693
dc.description.abstractDeformation properties of lightweight coarse grained material from recycled foamed glass have been determined from large-scale triaxial tests on prismatic specimens with dimensions 40 cm × 40 cm × 80 cm. Deformations were measured locally using vertical and horizontal local deformation transducers. Monotonic and cyclic loading at small to medium strain range were conducted. Three load sequences representing the expected conditions of use of lightweight material as vibration-reducing material in railway geotechnics have been used. Results indicate strong effect of brittle cellular structure of tested material as well as confining pressure dependency of elastic threshold shear strain and damping ratio. The results were used to assess the applicability of empirical formulas for shear modulus of granular materials to lightweight foamed glass. The parameters determined from the laboratory tests were further used in numerical analysis of railway dynamic response. The results of the numerical simulations show that replacement of fill in track embankment by lightweight material could improve the dynamic response of the track in reducing the vibration.
dc.description.abstractDynamic properties of lightweight foamed glass and their effect on railway vibration
dc.language.isoeng
dc.titleDynamic properties of lightweight foamed glass and their effect on railway vibration
dc.typePeer reviewed
dc.typeJournal article
dc.source.volume21
dc.source.journalTransportation Geotechnics
dc.identifier.doi10.1016/j.trgeo.2019.100276
dc.identifier.cristin1721988
dc.relation.projectEC/H2020/636285
cristin.unitcode7452,4,2,0
cristin.unitnameComputational Geomechanics (CGM)
cristin.ispublishedtrue
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel