• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges Geotekniske Institutt
  • NGI articles
  • View Item
  •   Home
  • Norges Geotekniske Institutt
  • NGI articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling 2018 Anak Krakatoa Flank Collapse and Tsunami: Effect of Landslide Failure Mechanism and Dynamics on Tsunami Generation

Zengaffinen, Thomas; Løvholt, Finn; Pedersen, Geir Kleivstul; Muhari, Abdul
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Zengaffinen_etal%282020%29.pdf (4.282Mb)
URI
https://hdl.handle.net/11250/2756118
Date
2020
Metadata
Show full item record
Collections
  • NGI articles [973]
Original version
Pure and Applied Geophysics (PAGEOPH). 2020, 177 2493-2516.   10.1007/s00024-020-02489-x
Abstract
The 2018 Anak Krakatoa volcano flank collapse generated a tsunami that impacted the Sunda Strait coastlines. In the absence of a tsunami early warning system, it caused several hundred fatalities. There are ongoing discussions to understand how the failure mechanism of this event affected landslide dynamics and tsunami generation. In this paper, the sensitivity to different failure scenarios on the tsunami generation is investigated through numerical modelling. To this end, the rate of mass release, the landslide volume, the material yield strength, and orientation of the landslide failure plane are varied to shed light on the failure mechanism, landslide evolution, and tsunami generation. We model the landslide dynamics using the depth-averaged viscoplastic flow model BingClaw, coupled with depth-averaged long wave and shallow water type models to simulated tsunami propagation. We are able to match fairly well the observed tsunami surface elevation amplitudes and inundation heights in selected area with the numerical simulations. However, as observed by other authors, discrepancies in simulated and observed arrival times for some of the offshore gauges are found, which raises questions related to the accuracy of the available bathymetry. For this purpose, further sensitivity studies changing the bathymetric depth near the source area are carried out. With this alteration we are also able to match better the arrival times of the waves.
Journal
Pure and Applied Geophysics (PAGEOPH)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit